num-traits/bigint/src/bigint.rs

1768 lines
46 KiB
Rust

use std::default::Default;
use std::ops::{Add, Div, Mul, Neg, Rem, Shl, Shr, Sub, Not};
use std::str::{self, FromStr};
use std::fmt;
use std::cmp::Ordering::{self, Less, Greater, Equal};
use std::{i64, u64};
use std::ascii::AsciiExt;
#[cfg(feature = "serde")]
use serde;
// Some of the tests of non-RNG-based functionality are randomized using the
// RNG-based functionality, so the RNG-based functionality needs to be enabled
// for tests.
#[cfg(any(feature = "rand", test))]
use rand::Rng;
use integer::Integer;
use traits::{ToPrimitive, FromPrimitive, Num, CheckedAdd, CheckedSub,
CheckedMul, CheckedDiv, Signed, Zero, One};
use self::Sign::{Minus, NoSign, Plus};
use super::ParseBigIntError;
use super::big_digit;
use super::big_digit::{BigDigit, DoubleBigDigit};
use biguint;
use biguint::to_str_radix_reversed;
use biguint::BigUint;
use UsizePromotion;
use IsizePromotion;
#[cfg(test)]
#[path = "tests/bigint.rs"]
mod bigint_tests;
/// A Sign is a `BigInt`'s composing element.
#[derive(PartialEq, PartialOrd, Eq, Ord, Copy, Clone, Debug, Hash)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
pub enum Sign {
Minus,
NoSign,
Plus,
}
impl Neg for Sign {
type Output = Sign;
/// Negate Sign value.
#[inline]
fn neg(self) -> Sign {
match self {
Minus => Plus,
NoSign => NoSign,
Plus => Minus,
}
}
}
impl Mul<Sign> for Sign {
type Output = Sign;
#[inline]
fn mul(self, other: Sign) -> Sign {
match (self, other) {
(NoSign, _) | (_, NoSign) => NoSign,
(Plus, Plus) | (Minus, Minus) => Plus,
(Plus, Minus) | (Minus, Plus) => Minus,
}
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for Sign {
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
where S: serde::Serializer
{
match *self {
Sign::Minus => (-1i8).serialize(serializer),
Sign::NoSign => 0i8.serialize(serializer),
Sign::Plus => 1i8.serialize(serializer),
}
}
}
#[cfg(feature = "serde")]
impl serde::Deserialize for Sign {
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error>
where D: serde::Deserializer
{
use serde::de::Error;
let sign: i8 = try!(serde::Deserialize::deserialize(deserializer));
match sign {
-1 => Ok(Sign::Minus),
0 => Ok(Sign::NoSign),
1 => Ok(Sign::Plus),
_ => Err(D::Error::invalid_value("sign must be -1, 0, or 1")),
}
}
}
/// A big signed integer type.
#[derive(Clone, Debug, Hash)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
pub struct BigInt {
sign: Sign,
data: BigUint,
}
impl PartialEq for BigInt {
#[inline]
fn eq(&self, other: &BigInt) -> bool {
self.cmp(other) == Equal
}
}
impl Eq for BigInt {}
impl PartialOrd for BigInt {
#[inline]
fn partial_cmp(&self, other: &BigInt) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for BigInt {
#[inline]
fn cmp(&self, other: &BigInt) -> Ordering {
let scmp = self.sign.cmp(&other.sign);
if scmp != Equal {
return scmp;
}
match self.sign {
NoSign => Equal,
Plus => self.data.cmp(&other.data),
Minus => other.data.cmp(&self.data),
}
}
}
impl Default for BigInt {
#[inline]
fn default() -> BigInt {
Zero::zero()
}
}
impl fmt::Display for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "", &self.data.to_str_radix(10))
}
}
impl fmt::Binary for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "0b", &self.data.to_str_radix(2))
}
}
impl fmt::Octal for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "0o", &self.data.to_str_radix(8))
}
}
impl fmt::LowerHex for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "0x", &self.data.to_str_radix(16))
}
}
impl fmt::UpperHex for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(),
"0x",
&self.data.to_str_radix(16).to_ascii_uppercase())
}
}
impl FromStr for BigInt {
type Err = ParseBigIntError;
#[inline]
fn from_str(s: &str) -> Result<BigInt, ParseBigIntError> {
BigInt::from_str_radix(s, 10)
}
}
impl Num for BigInt {
type FromStrRadixErr = ParseBigIntError;
/// Creates and initializes a BigInt.
#[inline]
fn from_str_radix(mut s: &str, radix: u32) -> Result<BigInt, ParseBigIntError> {
let sign = if s.starts_with('-') {
let tail = &s[1..];
if !tail.starts_with('+') {
s = tail
}
Minus
} else {
Plus
};
let bu = try!(BigUint::from_str_radix(s, radix));
Ok(BigInt::from_biguint(sign, bu))
}
}
impl Shl<usize> for BigInt {
type Output = BigInt;
#[inline]
fn shl(self, rhs: usize) -> BigInt {
(&self) << rhs
}
}
impl<'a> Shl<usize> for &'a BigInt {
type Output = BigInt;
#[inline]
fn shl(self, rhs: usize) -> BigInt {
BigInt::from_biguint(self.sign, &self.data << rhs)
}
}
impl Shr<usize> for BigInt {
type Output = BigInt;
#[inline]
fn shr(self, rhs: usize) -> BigInt {
BigInt::from_biguint(self.sign, self.data >> rhs)
}
}
impl<'a> Shr<usize> for &'a BigInt {
type Output = BigInt;
#[inline]
fn shr(self, rhs: usize) -> BigInt {
BigInt::from_biguint(self.sign, &self.data >> rhs)
}
}
impl Zero for BigInt {
#[inline]
fn zero() -> BigInt {
BigInt::from_biguint(NoSign, Zero::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.sign == NoSign
}
}
impl One for BigInt {
#[inline]
fn one() -> BigInt {
BigInt::from_biguint(Plus, One::one())
}
}
impl Signed for BigInt {
#[inline]
fn abs(&self) -> BigInt {
match self.sign {
Plus | NoSign => self.clone(),
Minus => BigInt::from_biguint(Plus, self.data.clone()),
}
}
#[inline]
fn abs_sub(&self, other: &BigInt) -> BigInt {
if *self <= *other {
Zero::zero()
} else {
self - other
}
}
#[inline]
fn signum(&self) -> BigInt {
match self.sign {
Plus => BigInt::from_biguint(Plus, One::one()),
Minus => BigInt::from_biguint(Minus, One::one()),
NoSign => Zero::zero(),
}
}
#[inline]
fn is_positive(&self) -> bool {
self.sign == Plus
}
#[inline]
fn is_negative(&self) -> bool {
self.sign == Minus
}
}
// A convenience method for getting the absolute value of an i32 in a u32.
#[inline]
fn i32_abs_as_u32(a: i32) -> u32 {
if a == i32::min_value() {
a as u32
} else {
a.abs() as u32
}
}
// A convenience method for getting the absolute value of an i64 in a u64.
#[inline]
fn i64_abs_as_u64(a: i64) -> u64 {
if a == i64::min_value() {
a as u64
} else {
a.abs() as u64
}
}
// We want to forward to BigUint::add, but it's not clear how that will go until
// we compare both sign and magnitude. So we duplicate this body for every
// val/ref combination, deferring that decision to BigUint's own forwarding.
macro_rules! bigint_add {
($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => {
match ($a.sign, $b.sign) {
(_, NoSign) => $a_owned,
(NoSign, _) => $b_owned,
// same sign => keep the sign with the sum of magnitudes
(Plus, Plus) | (Minus, Minus) =>
BigInt::from_biguint($a.sign, $a_data + $b_data),
// opposite signs => keep the sign of the larger with the difference of magnitudes
(Plus, Minus) | (Minus, Plus) =>
match $a.data.cmp(&$b.data) {
Less => BigInt::from_biguint($b.sign, $b_data - $a_data),
Greater => BigInt::from_biguint($a.sign, $a_data - $b_data),
Equal => Zero::zero(),
},
}
};
}
impl<'a, 'b> Add<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: &BigInt) -> BigInt {
bigint_add!(self,
self.clone(),
&self.data,
other,
other.clone(),
&other.data)
}
}
impl<'a> Add<BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: BigInt) -> BigInt {
bigint_add!(self, self.clone(), &self.data, other, other, other.data)
}
}
impl<'a> Add<&'a BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: &BigInt) -> BigInt {
bigint_add!(self, self, self.data, other, other.clone(), &other.data)
}
}
impl Add<BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: BigInt) -> BigInt {
bigint_add!(self, self, self.data, other, other, other.data)
}
}
promote_all_scalars!(impl Add for BigInt, add);
forward_all_scalar_binop_to_val_val_commutative!(impl Add<BigDigit> for BigInt, add);
forward_all_scalar_binop_to_val_val_commutative!(impl Add<DoubleBigDigit> for BigInt, add);
impl Add<BigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: BigDigit) -> BigInt {
match self.sign {
NoSign => From::from(other),
Plus => BigInt::from_biguint(Plus, self.data + other),
Minus =>
match self.data.cmp(&From::from(other)) {
Equal => Zero::zero(),
Less => BigInt::from_biguint(Plus, other - self.data),
Greater => BigInt::from_biguint(Minus, self.data - other),
}
}
}
}
impl Add<DoubleBigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: DoubleBigDigit) -> BigInt {
match self.sign {
NoSign => From::from(other),
Plus => BigInt::from_biguint(Plus, self.data + other),
Minus =>
match self.data.cmp(&From::from(other)) {
Equal => Zero::zero(),
Less => BigInt::from_biguint(Plus, other - self.data),
Greater => BigInt::from_biguint(Minus, self.data - other),
}
}
}
}
forward_all_scalar_binop_to_val_val_commutative!(impl Add<i32> for BigInt, add);
forward_all_scalar_binop_to_val_val_commutative!(impl Add<i64> for BigInt, add);
impl Add<i32> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: i32) -> BigInt {
if other >= 0 {
self + other as u32
} else {
self - i32_abs_as_u32(other)
}
}
}
impl Add<i64> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: i64) -> BigInt {
if other >= 0 {
self + other as u64
} else {
self - i64_abs_as_u64(other)
}
}
}
// We want to forward to BigUint::sub, but it's not clear how that will go until
// we compare both sign and magnitude. So we duplicate this body for every
// val/ref combination, deferring that decision to BigUint's own forwarding.
macro_rules! bigint_sub {
($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => {
match ($a.sign, $b.sign) {
(_, NoSign) => $a_owned,
(NoSign, _) => -$b_owned,
// opposite signs => keep the sign of the left with the sum of magnitudes
(Plus, Minus) | (Minus, Plus) =>
BigInt::from_biguint($a.sign, $a_data + $b_data),
// same sign => keep or toggle the sign of the left with the difference of magnitudes
(Plus, Plus) | (Minus, Minus) =>
match $a.data.cmp(&$b.data) {
Less => BigInt::from_biguint(-$a.sign, $b_data - $a_data),
Greater => BigInt::from_biguint($a.sign, $a_data - $b_data),
Equal => Zero::zero(),
},
}
};
}
impl<'a, 'b> Sub<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: &BigInt) -> BigInt {
bigint_sub!(self,
self.clone(),
&self.data,
other,
other.clone(),
&other.data)
}
}
impl<'a> Sub<BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
bigint_sub!(self, self.clone(), &self.data, other, other, other.data)
}
}
impl<'a> Sub<&'a BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: &BigInt) -> BigInt {
bigint_sub!(self, self, self.data, other, other.clone(), &other.data)
}
}
impl Sub<BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
bigint_sub!(self, self, self.data, other, other, other.data)
}
}
promote_all_scalars!(impl Sub for BigInt, sub);
forward_all_scalar_binop_to_val_val!(impl Sub<BigDigit> for BigInt, sub);
forward_all_scalar_binop_to_val_val!(impl Sub<DoubleBigDigit> for BigInt, sub);
impl Sub<BigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: BigDigit) -> BigInt {
match self.sign {
NoSign => BigInt::from_biguint(Minus, From::from(other)),
Minus => BigInt::from_biguint(Minus, self.data + other),
Plus =>
match self.data.cmp(&From::from(other)) {
Equal => Zero::zero(),
Greater => BigInt::from_biguint(Plus, self.data - other),
Less => BigInt::from_biguint(Minus, other - self.data),
}
}
}
}
impl Sub<BigInt> for BigDigit {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
-(other - self)
}
}
impl Sub<DoubleBigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: DoubleBigDigit) -> BigInt {
match self.sign {
NoSign => BigInt::from_biguint(Minus, From::from(other)),
Minus => BigInt::from_biguint(Minus, self.data + other),
Plus =>
match self.data.cmp(&From::from(other)) {
Equal => Zero::zero(),
Greater => BigInt::from_biguint(Plus, self.data - other),
Less => BigInt::from_biguint(Minus, other - self.data),
}
}
}
}
impl Sub<BigInt> for DoubleBigDigit {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
-(other - self)
}
}
forward_all_scalar_binop_to_val_val!(impl Sub<i32> for BigInt, sub);
forward_all_scalar_binop_to_val_val!(impl Sub<i64> for BigInt, sub);
impl Sub<i32> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: i32) -> BigInt {
if other >= 0 {
self - other as u32
} else {
self + i32_abs_as_u32(other)
}
}
}
impl Sub<BigInt> for i32 {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
if self >= 0 {
self as u32 - other
} else {
-other - i32_abs_as_u32(self)
}
}
}
impl Sub<i64> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: i64) -> BigInt {
if other >= 0 {
self - other as u64
} else {
self + i64_abs_as_u64(other)
}
}
}
impl Sub<BigInt> for i64 {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
if self >= 0 {
self as u64 - other
} else {
-other - i64_abs_as_u64(self)
}
}
}
forward_all_binop_to_ref_ref!(impl Mul for BigInt, mul);
impl<'a, 'b> Mul<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn mul(self, other: &BigInt) -> BigInt {
BigInt::from_biguint(self.sign * other.sign, &self.data * &other.data)
}
}
promote_all_scalars!(impl Mul for BigInt, mul);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<BigDigit> for BigInt, mul);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<DoubleBigDigit> for BigInt, mul);
impl Mul<BigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn mul(self, other: BigDigit) -> BigInt {
BigInt::from_biguint(self.sign, self.data * other)
}
}
impl Mul<DoubleBigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn mul(self, other: DoubleBigDigit) -> BigInt {
BigInt::from_biguint(self.sign, self.data * other)
}
}
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i32> for BigInt, mul);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<i64> for BigInt, mul);
impl Mul<i32> for BigInt {
type Output = BigInt;
#[inline]
fn mul(self, other: i32) -> BigInt {
if other >= 0 {
self * other as u32
} else {
-(self * i32_abs_as_u32(other))
}
}
}
impl Mul<i64> for BigInt {
type Output = BigInt;
#[inline]
fn mul(self, other: i64) -> BigInt {
if other >= 0 {
self * other as u64
} else {
-(self * i64_abs_as_u64(other))
}
}
}
forward_all_binop_to_ref_ref!(impl Div for BigInt, div);
impl<'a, 'b> Div<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn div(self, other: &BigInt) -> BigInt {
let (q, _) = self.div_rem(other);
q
}
}
promote_all_scalars!(impl Div for BigInt, div);
forward_all_scalar_binop_to_val_val!(impl Div<BigDigit> for BigInt, div);
forward_all_scalar_binop_to_val_val!(impl Div<DoubleBigDigit> for BigInt, div);
impl Div<BigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn div(self, other: BigDigit) -> BigInt {
BigInt::from_biguint(self.sign, self.data / other)
}
}
impl Div<BigInt> for BigDigit {
type Output = BigInt;
#[inline]
fn div(self, other: BigInt) -> BigInt {
BigInt::from_biguint(other.sign, self / other.data)
}
}
impl Div<DoubleBigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn div(self, other: DoubleBigDigit) -> BigInt {
BigInt::from_biguint(self.sign, self.data / other)
}
}
impl Div<BigInt> for DoubleBigDigit {
type Output = BigInt;
#[inline]
fn div(self, other: BigInt) -> BigInt {
BigInt::from_biguint(other.sign, self / other.data)
}
}
forward_all_scalar_binop_to_val_val!(impl Div<i32> for BigInt, div);
forward_all_scalar_binop_to_val_val!(impl Div<i64> for BigInt, div);
impl Div<i32> for BigInt {
type Output = BigInt;
#[inline]
fn div(self, other: i32) -> BigInt {
if other >= 0 {
self / other as u32
} else {
-(self / i32_abs_as_u32(other))
}
}
}
impl Div<BigInt> for i32 {
type Output = BigInt;
#[inline]
fn div(self, other: BigInt) -> BigInt {
if self >= 0 {
self as u32 / other
} else {
-(i32_abs_as_u32(self) / other)
}
}
}
impl Div<i64> for BigInt {
type Output = BigInt;
#[inline]
fn div(self, other: i64) -> BigInt {
if other >= 0 {
self / other as u64
} else {
-(self / i64_abs_as_u64(other))
}
}
}
impl Div<BigInt> for i64 {
type Output = BigInt;
#[inline]
fn div(self, other: BigInt) -> BigInt {
if self >= 0 {
self as u64 / other
} else {
-(i64_abs_as_u64(self) / other)
}
}
}
forward_all_binop_to_ref_ref!(impl Rem for BigInt, rem);
impl<'a, 'b> Rem<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn rem(self, other: &BigInt) -> BigInt {
let (_, r) = self.div_rem(other);
r
}
}
promote_all_scalars!(impl Rem for BigInt, rem);
forward_all_scalar_binop_to_val_val!(impl Rem<BigDigit> for BigInt, rem);
forward_all_scalar_binop_to_val_val!(impl Rem<DoubleBigDigit> for BigInt, rem);
impl Rem<BigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn rem(self, other: BigDigit) -> BigInt {
BigInt::from_biguint(self.sign, self.data % other)
}
}
impl Rem<BigInt> for BigDigit {
type Output = BigInt;
#[inline]
fn rem(self, other: BigInt) -> BigInt {
BigInt::from_biguint(Plus, self % other.data)
}
}
impl Rem<DoubleBigDigit> for BigInt {
type Output = BigInt;
#[inline]
fn rem(self, other: DoubleBigDigit) -> BigInt {
BigInt::from_biguint(self.sign, self.data % other)
}
}
impl Rem<BigInt> for DoubleBigDigit {
type Output = BigInt;
#[inline]
fn rem(self, other: BigInt) -> BigInt {
BigInt::from_biguint(Plus, self % other.data)
}
}
forward_all_scalar_binop_to_val_val!(impl Rem<i32> for BigInt, rem);
forward_all_scalar_binop_to_val_val!(impl Rem<i64> for BigInt, rem);
impl Rem<i32> for BigInt {
type Output = BigInt;
#[inline]
fn rem(self, other: i32) -> BigInt {
if other >= 0 {
self % other as u32
} else {
self % i32_abs_as_u32(other)
}
}
}
impl Rem<BigInt> for i32 {
type Output = BigInt;
#[inline]
fn rem(self, other: BigInt) -> BigInt {
if self >= 0 {
self as u32 % other
} else {
-(i32_abs_as_u32(self) % other)
}
}
}
impl Rem<i64> for BigInt {
type Output = BigInt;
#[inline]
fn rem(self, other: i64) -> BigInt {
if other >= 0 {
self % other as u64
} else {
self % i64_abs_as_u64(other)
}
}
}
impl Rem<BigInt> for i64 {
type Output = BigInt;
#[inline]
fn rem(self, other: BigInt) -> BigInt {
if self >= 0 {
self as u64 % other
} else {
-(i64_abs_as_u64(self) % other)
}
}
}
impl Neg for BigInt {
type Output = BigInt;
#[inline]
fn neg(mut self) -> BigInt {
self.sign = -self.sign;
self
}
}
impl<'a> Neg for &'a BigInt {
type Output = BigInt;
#[inline]
fn neg(self) -> BigInt {
-self.clone()
}
}
impl CheckedAdd for BigInt {
#[inline]
fn checked_add(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.add(v));
}
}
impl CheckedSub for BigInt {
#[inline]
fn checked_sub(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.sub(v));
}
}
impl CheckedMul for BigInt {
#[inline]
fn checked_mul(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.mul(v));
}
}
impl CheckedDiv for BigInt {
#[inline]
fn checked_div(&self, v: &BigInt) -> Option<BigInt> {
if v.is_zero() {
return None;
}
return Some(self.div(v));
}
}
impl Integer for BigInt {
#[inline]
fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) {
// r.sign == self.sign
let (d_ui, r_ui) = self.data.div_mod_floor(&other.data);
let d = BigInt::from_biguint(self.sign, d_ui);
let r = BigInt::from_biguint(self.sign, r_ui);
if other.is_negative() {
(-d, r)
} else {
(d, r)
}
}
#[inline]
fn div_floor(&self, other: &BigInt) -> BigInt {
let (d, _) = self.div_mod_floor(other);
d
}
#[inline]
fn mod_floor(&self, other: &BigInt) -> BigInt {
let (_, m) = self.div_mod_floor(other);
m
}
fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) {
// m.sign == other.sign
let (d_ui, m_ui) = self.data.div_rem(&other.data);
let d = BigInt::from_biguint(Plus, d_ui);
let m = BigInt::from_biguint(Plus, m_ui);
let one: BigInt = One::one();
match (self.sign, other.sign) {
(_, NoSign) => panic!(),
(Plus, Plus) | (NoSign, Plus) => (d, m),
(Plus, Minus) | (NoSign, Minus) => {
if m.is_zero() {
(-d, Zero::zero())
} else {
(-d - one, m + other)
}
}
(Minus, Plus) => {
if m.is_zero() {
(-d, Zero::zero())
} else {
(-d - one, other - m)
}
}
(Minus, Minus) => (d, -m),
}
}
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
///
/// The result is always positive.
#[inline]
fn gcd(&self, other: &BigInt) -> BigInt {
BigInt::from_biguint(Plus, self.data.gcd(&other.data))
}
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &BigInt) -> BigInt {
BigInt::from_biguint(Plus, self.data.lcm(&other.data))
}
/// Deprecated, use `is_multiple_of` instead.
#[inline]
fn divides(&self, other: &BigInt) -> bool {
return self.is_multiple_of(other);
}
/// Returns `true` if the number is a multiple of `other`.
#[inline]
fn is_multiple_of(&self, other: &BigInt) -> bool {
self.data.is_multiple_of(&other.data)
}
/// Returns `true` if the number is divisible by `2`.
#[inline]
fn is_even(&self) -> bool {
self.data.is_even()
}
/// Returns `true` if the number is not divisible by `2`.
#[inline]
fn is_odd(&self) -> bool {
self.data.is_odd()
}
}
impl ToPrimitive for BigInt {
#[inline]
fn to_i64(&self) -> Option<i64> {
match self.sign {
Plus => self.data.to_i64(),
NoSign => Some(0),
Minus => {
self.data.to_u64().and_then(|n| {
let m: u64 = 1 << 63;
if n < m {
Some(-(n as i64))
} else if n == m {
Some(i64::MIN)
} else {
None
}
})
}
}
}
#[inline]
fn to_u64(&self) -> Option<u64> {
match self.sign {
Plus => self.data.to_u64(),
NoSign => Some(0),
Minus => None,
}
}
#[inline]
fn to_f32(&self) -> Option<f32> {
self.data.to_f32().map(|n| {
if self.sign == Minus {
-n
} else {
n
}
})
}
#[inline]
fn to_f64(&self) -> Option<f64> {
self.data.to_f64().map(|n| {
if self.sign == Minus {
-n
} else {
n
}
})
}
}
impl FromPrimitive for BigInt {
#[inline]
fn from_i64(n: i64) -> Option<BigInt> {
Some(BigInt::from(n))
}
#[inline]
fn from_u64(n: u64) -> Option<BigInt> {
Some(BigInt::from(n))
}
#[inline]
fn from_f64(n: f64) -> Option<BigInt> {
if n >= 0.0 {
BigUint::from_f64(n).map(|x| BigInt::from_biguint(Plus, x))
} else {
BigUint::from_f64(-n).map(|x| BigInt::from_biguint(Minus, x))
}
}
}
impl From<i64> for BigInt {
#[inline]
fn from(n: i64) -> Self {
if n >= 0 {
BigInt::from(n as u64)
} else {
let u = u64::MAX - (n as u64) + 1;
BigInt {
sign: Minus,
data: BigUint::from(u),
}
}
}
}
macro_rules! impl_bigint_from_int {
($T:ty) => {
impl From<$T> for BigInt {
#[inline]
fn from(n: $T) -> Self {
BigInt::from(n as i64)
}
}
}
}
impl_bigint_from_int!(i8);
impl_bigint_from_int!(i16);
impl_bigint_from_int!(i32);
impl_bigint_from_int!(isize);
impl From<u64> for BigInt {
#[inline]
fn from(n: u64) -> Self {
if n > 0 {
BigInt {
sign: Plus,
data: BigUint::from(n),
}
} else {
BigInt::zero()
}
}
}
macro_rules! impl_bigint_from_uint {
($T:ty) => {
impl From<$T> for BigInt {
#[inline]
fn from(n: $T) -> Self {
BigInt::from(n as u64)
}
}
}
}
impl_bigint_from_uint!(u8);
impl_bigint_from_uint!(u16);
impl_bigint_from_uint!(u32);
impl_bigint_from_uint!(usize);
impl From<BigUint> for BigInt {
#[inline]
fn from(n: BigUint) -> Self {
if n.is_zero() {
BigInt::zero()
} else {
BigInt {
sign: Plus,
data: n,
}
}
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for BigInt {
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
where S: serde::Serializer
{
(self.sign, &self.data).serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl serde::Deserialize for BigInt {
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error>
where D: serde::Deserializer
{
let (sign, data) = try!(serde::Deserialize::deserialize(deserializer));
Ok(BigInt {
sign: sign,
data: data,
})
}
}
/// A generic trait for converting a value to a `BigInt`.
pub trait ToBigInt {
/// Converts the value of `self` to a `BigInt`.
fn to_bigint(&self) -> Option<BigInt>;
}
impl ToBigInt for BigInt {
#[inline]
fn to_bigint(&self) -> Option<BigInt> {
Some(self.clone())
}
}
impl ToBigInt for BigUint {
#[inline]
fn to_bigint(&self) -> Option<BigInt> {
if self.is_zero() {
Some(Zero::zero())
} else {
Some(BigInt {
sign: Plus,
data: self.clone(),
})
}
}
}
impl biguint::ToBigUint for BigInt {
#[inline]
fn to_biguint(&self) -> Option<BigUint> {
match self.sign() {
Plus => Some(self.data.clone()),
NoSign => Some(Zero::zero()),
Minus => None,
}
}
}
macro_rules! impl_to_bigint {
($T:ty, $from_ty:path) => {
impl ToBigInt for $T {
#[inline]
fn to_bigint(&self) -> Option<BigInt> {
$from_ty(*self)
}
}
}
}
impl_to_bigint!(isize, FromPrimitive::from_isize);
impl_to_bigint!(i8, FromPrimitive::from_i8);
impl_to_bigint!(i16, FromPrimitive::from_i16);
impl_to_bigint!(i32, FromPrimitive::from_i32);
impl_to_bigint!(i64, FromPrimitive::from_i64);
impl_to_bigint!(usize, FromPrimitive::from_usize);
impl_to_bigint!(u8, FromPrimitive::from_u8);
impl_to_bigint!(u16, FromPrimitive::from_u16);
impl_to_bigint!(u32, FromPrimitive::from_u32);
impl_to_bigint!(u64, FromPrimitive::from_u64);
impl_to_bigint!(f32, FromPrimitive::from_f32);
impl_to_bigint!(f64, FromPrimitive::from_f64);
pub trait RandBigInt {
/// Generate a random `BigUint` of the given bit size.
fn gen_biguint(&mut self, bit_size: usize) -> BigUint;
/// Generate a random BigInt of the given bit size.
fn gen_bigint(&mut self, bit_size: usize) -> BigInt;
/// Generate a random `BigUint` less than the given bound. Fails
/// when the bound is zero.
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint;
/// Generate a random `BigUint` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint;
/// Generate a random `BigInt` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt;
}
#[cfg(any(feature = "rand", test))]
impl<R: Rng> RandBigInt for R {
fn gen_biguint(&mut self, bit_size: usize) -> BigUint {
let (digits, rem) = bit_size.div_rem(&big_digit::BITS);
let mut data = Vec::with_capacity(digits + 1);
for _ in 0..digits {
data.push(self.gen());
}
if rem > 0 {
let final_digit: BigDigit = self.gen();
data.push(final_digit >> (big_digit::BITS - rem));
}
BigUint::new(data)
}
fn gen_bigint(&mut self, bit_size: usize) -> BigInt {
// Generate a random BigUint...
let biguint = self.gen_biguint(bit_size);
// ...and then randomly assign it a Sign...
let sign = if biguint.is_zero() {
// ...except that if the BigUint is zero, we need to try
// again with probability 0.5. This is because otherwise,
// the probability of generating a zero BigInt would be
// double that of any other number.
if self.gen() {
return self.gen_bigint(bit_size);
} else {
NoSign
}
} else if self.gen() {
Plus
} else {
Minus
};
BigInt::from_biguint(sign, biguint)
}
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint {
assert!(!bound.is_zero());
let bits = bound.bits();
loop {
let n = self.gen_biguint(bits);
if n < *bound {
return n;
}
}
}
fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint {
assert!(*lbound < *ubound);
return lbound + self.gen_biguint_below(&(ubound - lbound));
}
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt {
assert!(*lbound < *ubound);
let delta = (ubound - lbound).to_biguint().unwrap();
return lbound + self.gen_biguint_below(&delta).to_bigint().unwrap();
}
}
impl BigInt {
/// Creates and initializes a BigInt.
///
/// The digits are in little-endian base 2<sup>32</sup>.
#[inline]
pub fn new(sign: Sign, digits: Vec<BigDigit>) -> BigInt {
BigInt::from_biguint(sign, BigUint::new(digits))
}
/// Creates and initializes a `BigInt`.
///
/// The digits are in little-endian base 2<sup>32</sup>.
#[inline]
pub fn from_biguint(mut sign: Sign, mut data: BigUint) -> BigInt {
if sign == NoSign {
data.assign_from_slice(&[]);
} else if data.is_zero() {
sign = NoSign;
}
BigInt {
sign: sign,
data: data,
}
}
/// Creates and initializes a `BigInt`.
#[inline]
pub fn from_slice(sign: Sign, slice: &[BigDigit]) -> BigInt {
BigInt::from_biguint(sign, BigUint::from_slice(slice))
}
/// Reinitializes a `BigInt`.
#[inline]
pub fn assign_from_slice(&mut self, sign: Sign, slice: &[BigDigit]) {
if sign == NoSign {
self.data.assign_from_slice(&[]);
self.sign = NoSign;
} else {
self.data.assign_from_slice(slice);
self.sign = match self.data.is_zero() {
true => NoSign,
false => sign,
}
}
}
/// Creates and initializes a `BigInt`.
///
/// The bytes are in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num_bigint::{BigInt, Sign};
///
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"),
/// BigInt::parse_bytes(b"65", 10).unwrap());
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"),
/// BigInt::parse_bytes(b"16705", 10).unwrap());
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"),
/// BigInt::parse_bytes(b"16706", 10).unwrap());
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"),
/// BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
/// ```
#[inline]
pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt {
BigInt::from_biguint(sign, BigUint::from_bytes_be(bytes))
}
/// Creates and initializes a `BigInt`.
///
/// The bytes are in little-endian byte order.
#[inline]
pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt {
BigInt::from_biguint(sign, BigUint::from_bytes_le(bytes))
}
/// Creates and initializes a `BigInt` from an array of bytes in
/// two's complement binary representation.
///
/// The digits are in big-endian base 2<sup>8</sup>.
#[inline]
pub fn from_signed_bytes_be(digits: &[u8]) -> BigInt {
let sign = match digits.first() {
Some(v) if *v > 0x7f => Sign::Minus,
Some(_) => Sign::Plus,
None => return BigInt::zero(),
};
if sign == Sign::Minus {
// two's-complement the content to retrieve the magnitude
let mut digits = Vec::from(digits);
twos_complement_be(&mut digits);
BigInt::from_biguint(sign, BigUint::from_bytes_be(&*digits))
} else {
BigInt::from_biguint(sign, BigUint::from_bytes_be(digits))
}
}
/// Creates and initializes a `BigInt` from an array of bytes in two's complement.
///
/// The digits are in little-endian base 2<sup>8</sup>.
#[inline]
pub fn from_signed_bytes_le(digits: &[u8]) -> BigInt {
let sign = match digits.last() {
Some(v) if *v > 0x7f => Sign::Minus,
Some(_) => Sign::Plus,
None => return BigInt::zero(),
};
if sign == Sign::Minus {
// two's-complement the content to retrieve the magnitude
let mut digits = Vec::from(digits);
twos_complement_le(&mut digits);
BigInt::from_biguint(sign, BigUint::from_bytes_le(&*digits))
} else {
BigInt::from_biguint(sign, BigUint::from_bytes_le(digits))
}
}
/// Creates and initializes a `BigInt`.
///
/// # Examples
///
/// ```
/// use num_bigint::{BigInt, ToBigInt};
///
/// assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234));
/// assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD));
/// assert_eq!(BigInt::parse_bytes(b"G", 16), None);
/// ```
#[inline]
pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigInt> {
str::from_utf8(buf).ok().and_then(|s| BigInt::from_str_radix(s, radix).ok())
}
/// Creates and initializes a `BigInt`. Each u8 of the input slice is
/// interpreted as one digit of the number
/// and must therefore be less than `radix`.
///
/// The bytes are in big-endian byte order.
/// `radix` must be in the range `2...256`.
///
/// # Examples
///
/// ```
/// use num_bigint::{BigInt, Sign};
///
/// let inbase190 = vec![15, 33, 125, 12, 14];
/// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap();
/// assert_eq!(a.to_radix_be(190), (Sign:: Minus, inbase190));
/// ```
pub fn from_radix_be(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> {
BigUint::from_radix_be(buf, radix).map(|u| BigInt::from_biguint(sign, u))
}
/// Creates and initializes a `BigInt`. Each u8 of the input slice is
/// interpreted as one digit of the number
/// and must therefore be less than `radix`.
///
/// The bytes are in little-endian byte order.
/// `radix` must be in the range `2...256`.
///
/// # Examples
///
/// ```
/// use num_bigint::{BigInt, Sign};
///
/// let inbase190 = vec![14, 12, 125, 33, 15];
/// let a = BigInt::from_radix_be(Sign::Minus, &inbase190, 190).unwrap();
/// assert_eq!(a.to_radix_be(190), (Sign::Minus, inbase190));
/// ```
pub fn from_radix_le(sign: Sign, buf: &[u8], radix: u32) -> Option<BigInt> {
BigUint::from_radix_le(buf, radix).map(|u| BigInt::from_biguint(sign, u))
}
/// Returns the sign and the byte representation of the `BigInt` in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num_bigint::{ToBigInt, Sign};
///
/// let i = -1125.to_bigint().unwrap();
/// assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101]));
/// ```
#[inline]
pub fn to_bytes_be(&self) -> (Sign, Vec<u8>) {
(self.sign, self.data.to_bytes_be())
}
/// Returns the sign and the byte representation of the `BigInt` in little-endian byte order.
///
/// # Examples
///
/// ```
/// use num_bigint::{ToBigInt, Sign};
///
/// let i = -1125.to_bigint().unwrap();
/// assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4]));
/// ```
#[inline]
pub fn to_bytes_le(&self) -> (Sign, Vec<u8>) {
(self.sign, self.data.to_bytes_le())
}
/// Returns the two's complement byte representation of the `BigInt` in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num_bigint::ToBigInt;
///
/// let i = -1125.to_bigint().unwrap();
/// assert_eq!(i.to_signed_bytes_be(), vec![251, 155]);
/// ```
#[inline]
pub fn to_signed_bytes_be(&self) -> Vec<u8> {
let mut bytes = self.data.to_bytes_be();
let first_byte = bytes.first().map(|v| *v).unwrap_or(0);
if first_byte > 0x7f && !(first_byte == 0x80 && bytes.iter().skip(1).all(Zero::is_zero)) {
// msb used by magnitude, extend by 1 byte
bytes.insert(0, 0);
}
if self.sign == Sign::Minus {
twos_complement_be(&mut bytes);
}
bytes
}
/// Returns the two's complement byte representation of the `BigInt` in little-endian byte order.
///
/// # Examples
///
/// ```
/// use num_bigint::ToBigInt;
///
/// let i = -1125.to_bigint().unwrap();
/// assert_eq!(i.to_signed_bytes_le(), vec![155, 251]);
/// ```
#[inline]
pub fn to_signed_bytes_le(&self) -> Vec<u8> {
let mut bytes = self.data.to_bytes_le();
let last_byte = bytes.last().map(|v| *v).unwrap_or(0);
if last_byte > 0x7f && !(last_byte == 0x80 && bytes.iter().rev().skip(1).all(Zero::is_zero)) {
// msb used by magnitude, extend by 1 byte
bytes.push(0);
}
if self.sign == Sign::Minus {
twos_complement_le(&mut bytes);
}
bytes
}
/// Returns the integer formatted as a string in the given radix.
/// `radix` must be in the range `2...36`.
///
/// # Examples
///
/// ```
/// use num_bigint::BigInt;
///
/// let i = BigInt::parse_bytes(b"ff", 16).unwrap();
/// assert_eq!(i.to_str_radix(16), "ff");
/// ```
#[inline]
pub fn to_str_radix(&self, radix: u32) -> String {
let mut v = to_str_radix_reversed(&self.data, radix);
if self.is_negative() {
v.push(b'-');
}
v.reverse();
unsafe { String::from_utf8_unchecked(v) }
}
/// Returns the integer in the requested base in big-endian digit order.
/// The output is not given in a human readable alphabet but as a zero
/// based u8 number.
/// `radix` must be in the range `2...256`.
///
/// # Examples
///
/// ```
/// use num_bigint::{BigInt, Sign};
///
/// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_be(159),
/// (Sign::Minus, vec![2, 94, 27]));
/// // 0xFFFF = 65535 = 2*(159^2) + 94*159 + 27
/// ```
#[inline]
pub fn to_radix_be(&self, radix: u32) -> (Sign, Vec<u8>) {
(self.sign, self.data.to_radix_be(radix))
}
/// Returns the integer in the requested base in little-endian digit order.
/// The output is not given in a human readable alphabet but as a zero
/// based u8 number.
/// `radix` must be in the range `2...256`.
///
/// # Examples
///
/// ```
/// use num_bigint::{BigInt, Sign};
///
/// assert_eq!(BigInt::from(-0xFFFFi64).to_radix_le(159),
/// (Sign::Minus, vec![27, 94, 2]));
/// // 0xFFFF = 65535 = 27 + 94*159 + 2*(159^2)
/// ```
#[inline]
pub fn to_radix_le(&self, radix: u32) -> (Sign, Vec<u8>) {
(self.sign, self.data.to_radix_le(radix))
}
/// Returns the sign of the `BigInt` as a `Sign`.
///
/// # Examples
///
/// ```
/// use num_bigint::{ToBigInt, Sign};
///
/// assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus);
/// assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus);
/// assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign);
/// ```
#[inline]
pub fn sign(&self) -> Sign {
self.sign
}
/// Determines the fewest bits necessary to express the `BigInt`,
/// not including the sign.
#[inline]
pub fn bits(&self) -> usize {
self.data.bits()
}
/// Converts this `BigInt` into a `BigUint`, if it's not negative.
#[inline]
pub fn to_biguint(&self) -> Option<BigUint> {
match self.sign {
Plus => Some(self.data.clone()),
NoSign => Some(Zero::zero()),
Minus => None,
}
}
#[inline]
pub fn checked_add(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.add(v));
}
#[inline]
pub fn checked_sub(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.sub(v));
}
#[inline]
pub fn checked_mul(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.mul(v));
}
#[inline]
pub fn checked_div(&self, v: &BigInt) -> Option<BigInt> {
if v.is_zero() {
return None;
}
return Some(self.div(v));
}
}
/// Perform in-place two's complement of the given binary representation,
/// in little-endian byte order.
#[inline]
fn twos_complement_le(digits: &mut [u8]) {
twos_complement(digits)
}
/// Perform in-place two's complement of the given binary representation
/// in big-endian byte order.
#[inline]
fn twos_complement_be(digits: &mut [u8]) {
twos_complement(digits.iter_mut().rev())
}
/// Perform in-place two's complement of the given digit iterator
/// starting from the least significant byte.
#[inline]
fn twos_complement<'a, I>(digits: I)
where I: IntoIterator<Item = &'a mut u8>
{
let mut carry = true;
for d in digits {
*d = d.not();
if carry {
*d = d.wrapping_add(1);
carry = d.is_zero();
}
}
}