num-traits/src/bigint.rs

4989 lines
154 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
//!
//! A `BigUint` is represented as a vector of `BigDigit`s.
//! A `BigInt` is a combination of `BigUint` and `Sign`.
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! ## Example
//!
//! ```rust
//! use num::{BigUint, Zero, One};
//! use std::mem::replace;
//!
//! // Calculate large fibonacci numbers.
//! fn fib(n: usize) -> BigUint {
//! let mut f0: BigUint = Zero::zero();
//! let mut f1: BigUint = One::one();
//! for _ in 0..n {
//! let f2 = f0 + &f1;
//! // This is a low cost way of swapping f0 with f1 and f1 with f2.
//! f0 = replace(&mut f1, f2);
//! }
//! f0
//! }
//!
//! // This is a very large number.
//! println!("fib(1000) = {}", fib(1000));
//! ```
//!
//! It's easy to generate large random numbers:
//!
//! ```rust
//! extern crate rand;
//! extern crate num;
//!
//! # #[cfg(feature = "rand")]
//! # fn main() {
//! use num::bigint::{ToBigInt, RandBigInt};
//!
//! let mut rng = rand::thread_rng();
//! let a = rng.gen_bigint(1000);
//!
//! let low = -10000.to_bigint().unwrap();
//! let high = 10000.to_bigint().unwrap();
//! let b = rng.gen_bigint_range(&low, &high);
//!
//! // Probably an even larger number.
//! println!("{}", a * b);
//! # }
//!
//! # #[cfg(not(feature = "rand"))]
//! # fn main() {
//! # }
//! ```
use Integer;
use std::borrow::Cow;
use std::default::Default;
use std::error::Error;
use std::iter::repeat;
use std::num::ParseIntError;
use std::ops::{Add, BitAnd, BitOr, BitXor, Div, Mul, Neg, Rem, Shl, Shr, Sub};
use std::str::{self, FromStr};
use std::fmt;
use std::cmp::Ordering::{self, Less, Greater, Equal};
use std::{f32, f64};
use std::{u8, i64, u64};
use std::ascii::AsciiExt;
#[cfg(feature = "serde")]
use serde;
// Some of the tests of non-RNG-based functionality are randomized using the
// RNG-based functionality, so the RNG-based functionality needs to be enabled
// for tests.
#[cfg(any(feature = "rand", test))]
use rand::Rng;
use traits::{ToPrimitive, FromPrimitive};
use traits::Float;
use {Num, Unsigned, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv, Signed, Zero, One};
use self::Sign::{Minus, NoSign, Plus};
/// A `BigDigit` is a `BigUint`'s composing element.
pub type BigDigit = u32;
/// A `DoubleBigDigit` is the internal type used to do the computations. Its
/// size is the double of the size of `BigDigit`.
pub type DoubleBigDigit = u64;
pub const ZERO_BIG_DIGIT: BigDigit = 0;
#[allow(non_snake_case)]
pub mod big_digit {
use super::BigDigit;
use super::DoubleBigDigit;
// `DoubleBigDigit` size dependent
pub const BITS: usize = 32;
pub const BASE: DoubleBigDigit = 1 << BITS;
const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS;
#[inline]
fn get_hi(n: DoubleBigDigit) -> BigDigit { (n >> BITS) as BigDigit }
#[inline]
fn get_lo(n: DoubleBigDigit) -> BigDigit { (n & LO_MASK) as BigDigit }
/// Split one `DoubleBigDigit` into two `BigDigit`s.
#[inline]
pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
(get_hi(n), get_lo(n))
}
/// Join two `BigDigit`s into one `DoubleBigDigit`
#[inline]
pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
(lo as DoubleBigDigit) | ((hi as DoubleBigDigit) << BITS)
}
}
/*
* Generic functions for add/subtract/multiply with carry/borrow:
*/
// Add with carry:
#[inline]
fn adc(a: BigDigit, b: BigDigit, carry: &mut BigDigit) -> BigDigit {
let (hi, lo) = big_digit::from_doublebigdigit(
(a as DoubleBigDigit) +
(b as DoubleBigDigit) +
(*carry as DoubleBigDigit));
*carry = hi;
lo
}
// Subtract with borrow:
#[inline]
fn sbb(a: BigDigit, b: BigDigit, borrow: &mut BigDigit) -> BigDigit {
let (hi, lo) = big_digit::from_doublebigdigit(
big_digit::BASE
+ (a as DoubleBigDigit)
- (b as DoubleBigDigit)
- (*borrow as DoubleBigDigit));
/*
hi * (base) + lo == 1*(base) + ai - bi - borrow
=> ai - bi - borrow < 0 <=> hi == 0
*/
*borrow = if hi == 0 { 1 } else { 0 };
lo
}
#[inline]
fn mac_with_carry(a: BigDigit, b: BigDigit, c: BigDigit, carry: &mut BigDigit) -> BigDigit {
let (hi, lo) = big_digit::from_doublebigdigit(
(a as DoubleBigDigit) +
(b as DoubleBigDigit) * (c as DoubleBigDigit) +
(*carry as DoubleBigDigit));
*carry = hi;
lo
}
/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
///
/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
/// This is _not_ true for an arbitrary numerator/denominator.
///
/// (This function also matches what the x86 divide instruction does).
#[inline]
fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
debug_assert!(hi < divisor);
let lhs = big_digit::to_doublebigdigit(hi, lo);
let rhs = divisor as DoubleBigDigit;
((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
}
/// A big unsigned integer type.
///
/// A `BigUint`-typed value `BigUint { data: vec!(a, b, c) }` represents a number
/// `(a + b * big_digit::BASE + c * big_digit::BASE^2)`.
#[derive(Clone, Debug, Hash)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
pub struct BigUint {
data: Vec<BigDigit>
}
impl PartialEq for BigUint {
#[inline]
fn eq(&self, other: &BigUint) -> bool {
match self.cmp(other) { Equal => true, _ => false }
}
}
impl Eq for BigUint {}
impl PartialOrd for BigUint {
#[inline]
fn partial_cmp(&self, other: &BigUint) -> Option<Ordering> {
Some(self.cmp(other))
}
}
fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering {
debug_assert!(a.last() != Some(&0));
debug_assert!(b.last() != Some(&0));
let (a_len, b_len) = (a.len(), b.len());
if a_len < b_len { return Less; }
if a_len > b_len { return Greater; }
for (&ai, &bi) in a.iter().rev().zip(b.iter().rev()) {
if ai < bi { return Less; }
if ai > bi { return Greater; }
}
return Equal;
}
impl Ord for BigUint {
#[inline]
fn cmp(&self, other: &BigUint) -> Ordering {
cmp_slice(&self.data[..], &other.data[..])
}
}
impl Default for BigUint {
#[inline]
fn default() -> BigUint { Zero::zero() }
}
impl fmt::Display for BigUint {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(true, "", &self.to_str_radix(10))
}
}
impl fmt::LowerHex for BigUint {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(true, "0x", &self.to_str_radix(16))
}
}
impl fmt::UpperHex for BigUint {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(true, "0x", &self.to_str_radix(16).to_ascii_uppercase())
}
}
impl fmt::Binary for BigUint {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(true, "0b", &self.to_str_radix(2))
}
}
impl fmt::Octal for BigUint {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(true, "0o", &self.to_str_radix(8))
}
}
impl FromStr for BigUint {
type Err = ParseBigIntError;
#[inline]
fn from_str(s: &str) -> Result<BigUint, ParseBigIntError> {
BigUint::from_str_radix(s, 10)
}
}
// Read bitwise digits that evenly divide BigDigit
fn from_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint {
debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits == 0);
debug_assert!(v.iter().all(|&c| (c as BigDigit) < (1 << bits)));
let digits_per_big_digit = big_digit::BITS / bits;
let data = v.chunks(digits_per_big_digit).map(|chunk| {
chunk.iter().rev().fold(0u32, |acc, &c| (acc << bits) | c as BigDigit)
}).collect();
BigUint::new(data)
}
// Read bitwise digits that don't evenly divide BigDigit
fn from_inexact_bitwise_digits_le(v: &[u8], bits: usize) -> BigUint {
debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits != 0);
debug_assert!(v.iter().all(|&c| (c as BigDigit) < (1 << bits)));
let big_digits = (v.len() * bits + big_digit::BITS - 1) / big_digit::BITS;
let mut data = Vec::with_capacity(big_digits);
let mut d = 0;
let mut dbits = 0;
for &c in v {
d |= (c as DoubleBigDigit) << dbits;
dbits += bits;
if dbits >= big_digit::BITS {
let (hi, lo) = big_digit::from_doublebigdigit(d);
data.push(lo);
d = hi as DoubleBigDigit;
dbits -= big_digit::BITS;
}
}
if dbits > 0 {
debug_assert!(dbits < big_digit::BITS);
data.push(d as BigDigit);
}
BigUint::new(data)
}
// Read little-endian radix digits
fn from_radix_digits_be(v: &[u8], radix: u32) -> BigUint {
debug_assert!(!v.is_empty() && !radix.is_power_of_two());
debug_assert!(v.iter().all(|&c| (c as u32) < radix));
// Estimate how big the result will be, so we can pre-allocate it.
let bits = (radix as f64).log2() * v.len() as f64;
let big_digits = (bits / big_digit::BITS as f64).ceil();
let mut data = Vec::with_capacity(big_digits as usize);
let (base, power) = get_radix_base(radix);
debug_assert!(base < (1 << 32));
let base = base as BigDigit;
let r = v.len() % power;
let i = if r == 0 { power } else { r };
let (head, tail) = v.split_at(i);
let first = head.iter().fold(0, |acc, &d| acc * radix + d as BigDigit);
data.push(first);
debug_assert!(tail.len() % power == 0);
for chunk in tail.chunks(power) {
if data.last() != Some(&0) {
data.push(0);
}
let mut carry = 0;
for d in data.iter_mut() {
*d = mac_with_carry(0, *d, base, &mut carry);
}
debug_assert!(carry == 0);
let n = chunk.iter().fold(0, |acc, &d| acc * radix + d as BigDigit);
add2(&mut data, &[n]);
}
BigUint::new(data)
}
impl Num for BigUint {
type FromStrRadixErr = ParseBigIntError;
/// Creates and initializes a `BigUint`.
fn from_str_radix(s: &str, radix: u32) -> Result<BigUint, ParseBigIntError> {
assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
let mut s = s;
if s.starts_with('+') {
let tail = &s[1..];
if !tail.starts_with('+') { s = tail }
}
if s.is_empty() {
// create ParseIntError::Empty
let e = u64::from_str_radix(s, radix).unwrap_err();
return Err(e.into());
}
// First normalize all characters to plain digit values
let mut v = Vec::with_capacity(s.len());
for b in s.bytes() {
let d = match b {
b'0' ... b'9' => b - b'0',
b'a' ... b'z' => b - b'a' + 10,
b'A' ... b'Z' => b - b'A' + 10,
_ => u8::MAX,
};
if d < radix as u8 {
v.push(d);
} else {
// create ParseIntError::InvalidDigit
let e = u64::from_str_radix(&s[v.len()..], radix).unwrap_err();
return Err(e.into());
}
}
let res = if radix.is_power_of_two() {
// Powers of two can use bitwise masks and shifting instead of multiplication
let bits = radix.trailing_zeros() as usize;
v.reverse();
if big_digit::BITS % bits == 0 {
from_bitwise_digits_le(&v, bits)
} else {
from_inexact_bitwise_digits_le(&v, bits)
}
} else {
from_radix_digits_be(&v, radix)
};
Ok(res)
}
}
macro_rules! forward_val_val_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl $imp<$res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to val-ref
$imp::$method(self, &other)
}
}
}
}
macro_rules! forward_val_val_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl $imp<$res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to val-ref, with the larger capacity as val
if self.data.capacity() >= other.data.capacity() {
$imp::$method(self, &other)
} else {
$imp::$method(other, &self)
}
}
}
}
}
macro_rules! forward_ref_val_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<$res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to ref-ref
$imp::$method(self, &other)
}
}
}
}
macro_rules! forward_ref_val_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<$res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// reverse, forward to val-ref
$imp::$method(other, self)
}
}
}
}
macro_rules! forward_val_ref_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<&'a $res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to ref-ref
$imp::$method(&self, other)
}
}
}
}
macro_rules! forward_ref_ref_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to val-ref
$imp::$method(self.clone(), other)
}
}
}
}
macro_rules! forward_ref_ref_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to val-ref, choosing the larger to clone
if self.data.len() >= other.data.len() {
$imp::$method(self.clone(), other)
} else {
$imp::$method(other.clone(), self)
}
}
}
}
}
// Forward everything to ref-ref, when reusing storage is not helpful
macro_rules! forward_all_binop_to_ref_ref {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop!(impl $imp for $res, $method);
forward_val_ref_binop!(impl $imp for $res, $method);
forward_ref_val_binop!(impl $imp for $res, $method);
};
}
// Forward everything to val-ref, so LHS storage can be reused
macro_rules! forward_all_binop_to_val_ref {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop!(impl $imp for $res, $method);
forward_ref_val_binop!(impl $imp for $res, $method);
forward_ref_ref_binop!(impl $imp for $res, $method);
};
}
// Forward everything to val-ref, commutatively, so either LHS or RHS storage can be reused
macro_rules! forward_all_binop_to_val_ref_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop_commutative!(impl $imp for $res, $method);
forward_ref_val_binop_commutative!(impl $imp for $res, $method);
forward_ref_ref_binop_commutative!(impl $imp for $res, $method);
};
}
forward_all_binop_to_val_ref_commutative!(impl BitAnd for BigUint, bitand);
impl<'a> BitAnd<&'a BigUint> for BigUint {
type Output = BigUint;
#[inline]
fn bitand(self, other: &BigUint) -> BigUint {
let mut data = self.data;
for (ai, &bi) in data.iter_mut().zip(other.data.iter()) {
*ai &= bi;
}
data.truncate(other.data.len());
BigUint::new(data)
}
}
forward_all_binop_to_val_ref_commutative!(impl BitOr for BigUint, bitor);
impl<'a> BitOr<&'a BigUint> for BigUint {
type Output = BigUint;
fn bitor(self, other: &BigUint) -> BigUint {
let mut data = self.data;
for (ai, &bi) in data.iter_mut().zip(other.data.iter()) {
*ai |= bi;
}
if other.data.len() > data.len() {
let extra = &other.data[data.len()..];
data.extend(extra.iter().cloned());
}
BigUint::new(data)
}
}
forward_all_binop_to_val_ref_commutative!(impl BitXor for BigUint, bitxor);
impl<'a> BitXor<&'a BigUint> for BigUint {
type Output = BigUint;
fn bitxor(self, other: &BigUint) -> BigUint {
let mut data = self.data;
for (ai, &bi) in data.iter_mut().zip(other.data.iter()) {
*ai ^= bi;
}
if other.data.len() > data.len() {
let extra = &other.data[data.len()..];
data.extend(extra.iter().cloned());
}
BigUint::new(data)
}
}
#[inline]
fn biguint_shl(n: Cow<BigUint>, bits: usize) -> BigUint {
let n_unit = bits / big_digit::BITS;
let mut data = match n_unit {
0 => n.into_owned().data,
_ => {
let len = n_unit + n.data.len() + 1;
let mut data = Vec::with_capacity(len);
data.extend(repeat(0).take(n_unit));
data.extend(n.data.iter().cloned());
data
},
};
let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut carry = 0;
for elem in data[n_unit..].iter_mut() {
let new_carry = *elem >> (big_digit::BITS - n_bits);
*elem = (*elem << n_bits) | carry;
carry = new_carry;
}
if carry != 0 {
data.push(carry);
}
}
BigUint::new(data)
}
impl Shl<usize> for BigUint {
type Output = BigUint;
#[inline]
fn shl(self, rhs: usize) -> BigUint {
biguint_shl(Cow::Owned(self), rhs)
}
}
impl<'a> Shl<usize> for &'a BigUint {
type Output = BigUint;
#[inline]
fn shl(self, rhs: usize) -> BigUint {
biguint_shl(Cow::Borrowed(self), rhs)
}
}
#[inline]
fn biguint_shr(n: Cow<BigUint>, bits: usize) -> BigUint {
let n_unit = bits / big_digit::BITS;
if n_unit >= n.data.len() { return Zero::zero(); }
let mut data = match n_unit {
0 => n.into_owned().data,
_ => n.data[n_unit..].to_vec(),
};
let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut borrow = 0;
for elem in data.iter_mut().rev() {
let new_borrow = *elem << (big_digit::BITS - n_bits);
*elem = (*elem >> n_bits) | borrow;
borrow = new_borrow;
}
}
BigUint::new(data)
}
impl Shr<usize> for BigUint {
type Output = BigUint;
#[inline]
fn shr(self, rhs: usize) -> BigUint {
biguint_shr(Cow::Owned(self), rhs)
}
}
impl<'a> Shr<usize> for &'a BigUint {
type Output = BigUint;
#[inline]
fn shr(self, rhs: usize) -> BigUint {
biguint_shr(Cow::Borrowed(self), rhs)
}
}
impl Zero for BigUint {
#[inline]
fn zero() -> BigUint { BigUint::new(Vec::new()) }
#[inline]
fn is_zero(&self) -> bool { self.data.is_empty() }
}
impl One for BigUint {
#[inline]
fn one() -> BigUint { BigUint::new(vec!(1)) }
}
impl Unsigned for BigUint {}
forward_all_binop_to_val_ref_commutative!(impl Add for BigUint, add);
// Only for the Add impl:
#[must_use]
#[inline]
fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit {
let mut b_iter = b.iter();
let mut carry = 0;
for ai in a.iter_mut() {
if let Some(bi) = b_iter.next() {
*ai = adc(*ai, *bi, &mut carry);
} else if carry != 0 {
*ai = adc(*ai, 0, &mut carry);
} else {
break;
}
}
debug_assert!(b_iter.next() == None);
carry
}
/// /Two argument addition of raw slices:
/// a += b
///
/// The caller _must_ ensure that a is big enough to store the result - typically this means
/// resizing a to max(a.len(), b.len()) + 1, to fit a possible carry.
fn add2(a: &mut [BigDigit], b: &[BigDigit]) {
let carry = __add2(a, b);
debug_assert!(carry == 0);
}
/*
* We'd really prefer to avoid using add2/sub2 directly as much as possible - since they make the
* caller entirely responsible for ensuring a's vector is big enough, and that the result is
* normalized, they're rather error prone and verbose:
*
* We could implement the Add and Sub traits for BigUint + BigDigit slices, like below - this works
* great, except that then it becomes the module's public interface, which we probably don't want:
*
* I'm keeping the code commented out, because I think this is worth revisiting:
impl<'a> Add<&'a [BigDigit]> for BigUint {
type Output = BigUint;
fn add(mut self, other: &[BigDigit]) -> BigUint {
if self.data.len() < other.len() {
let extra = other.len() - self.data.len();
self.data.extend(repeat(0).take(extra));
}
let carry = __add2(&mut self.data[..], other);
if carry != 0 {
self.data.push(carry);
}
self
}
}
*/
impl<'a> Add<&'a BigUint> for BigUint {
type Output = BigUint;
fn add(mut self, other: &BigUint) -> BigUint {
if self.data.len() < other.data.len() {
let extra = other.data.len() - self.data.len();
self.data.extend(repeat(0).take(extra));
}
let carry = __add2(&mut self.data[..], &other.data[..]);
if carry != 0 {
self.data.push(carry);
}
self
}
}
forward_all_binop_to_val_ref!(impl Sub for BigUint, sub);
fn sub2(a: &mut [BigDigit], b: &[BigDigit]) {
let mut b_iter = b.iter();
let mut borrow = 0;
for ai in a.iter_mut() {
if let Some(bi) = b_iter.next() {
*ai = sbb(*ai, *bi, &mut borrow);
} else if borrow != 0 {
*ai = sbb(*ai, 0, &mut borrow);
} else {
break;
}
}
/* note: we're _required_ to fail on underflow */
assert!(borrow == 0 && b_iter.all(|x| *x == 0),
"Cannot subtract b from a because b is larger than a.");
}
impl<'a> Sub<&'a BigUint> for BigUint {
type Output = BigUint;
fn sub(mut self, other: &BigUint) -> BigUint {
sub2(&mut self.data[..], &other.data[..]);
self.normalize()
}
}
fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> BigInt {
// Normalize:
let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
match cmp_slice(a, b) {
Greater => {
let mut ret = BigUint::from_slice(a);
sub2(&mut ret.data[..], b);
BigInt::from_biguint(Plus, ret.normalize())
},
Less => {
let mut ret = BigUint::from_slice(b);
sub2(&mut ret.data[..], a);
BigInt::from_biguint(Minus, ret.normalize())
},
_ => Zero::zero(),
}
}
forward_all_binop_to_ref_ref!(impl Mul for BigUint, mul);
/// Three argument multiply accumulate:
/// acc += b * c
fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
if c == 0 { return; }
let mut b_iter = b.iter();
let mut carry = 0;
for ai in acc.iter_mut() {
if let Some(bi) = b_iter.next() {
*ai = mac_with_carry(*ai, *bi, c, &mut carry);
} else if carry != 0 {
*ai = mac_with_carry(*ai, 0, c, &mut carry);
} else {
break;
}
}
assert!(carry == 0);
}
/// Three argument multiply accumulate:
/// acc += b * c
fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
let (x, y) = if b.len() < c.len() { (b, c) } else { (c, b) };
/*
* Karatsuba multiplication is slower than long multiplication for small x and y:
*/
if x.len() <= 4 {
for (i, xi) in x.iter().enumerate() {
mac_digit(&mut acc[i..], y, *xi);
}
} else {
/*
* Karatsuba multiplication:
*
* The idea is that we break x and y up into two smaller numbers that each have about half
* as many digits, like so (note that multiplying by b is just a shift):
*
* x = x0 + x1 * b
* y = y0 + y1 * b
*
* With some algebra, we can compute x * y with three smaller products, where the inputs to
* each of the smaller products have only about half as many digits as x and y:
*
* x * y = (x0 + x1 * b) * (y0 + y1 * b)
*
* x * y = x0 * y0
* + x0 * y1 * b
* + x1 * y0 * b
* + x1 * y1 * b^2
*
* Let p0 = x0 * y0 and p2 = x1 * y1:
*
* x * y = p0
* + (x0 * y1 + x1 * p0) * b
* + p2 * b^2
*
* The real trick is that middle term:
*
* x0 * y1 + x1 * y0
*
* = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2
*
* = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2
*
* Now we complete the square:
*
* = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2
*
* = -((x1 - x0) * (y1 - y0)) + p0 + p2
*
* Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula:
*
* x * y = p0
* + (p0 + p2 - p1) * b
* + p2 * b^2
*
* Where the three intermediate products are:
*
* p0 = x0 * y0
* p1 = (x1 - x0) * (y1 - y0)
* p2 = x1 * y1
*
* In doing the computation, we take great care to avoid unnecessary temporary variables
* (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a
* bit so we can use the same temporary variable for all the intermediate products:
*
* x * y = p2 * b^2 + p2 * b
* + p0 * b + p0
* - p1 * b
*
* The other trick we use is instead of doing explicit shifts, we slice acc at the
* appropriate offset when doing the add.
*/
/*
* When x is smaller than y, it's significantly faster to pick b such that x is split in
* half, not y:
*/
let b = x.len() / 2;
let (x0, x1) = x.split_at(b);
let (y0, y1) = y.split_at(b);
/* We reuse the same BigUint for all the intermediate multiplies: */
let len = y.len() + 1;
let mut p = BigUint { data: vec![0; len] };
// p2 = x1 * y1
mac3(&mut p.data[..], x1, y1);
// Not required, but the adds go faster if we drop any unneeded 0s from the end:
p = p.normalize();
add2(&mut acc[b..], &p.data[..]);
add2(&mut acc[b * 2..], &p.data[..]);
// Zero out p before the next multiply:
p.data.truncate(0);
p.data.extend(repeat(0).take(len));
// p0 = x0 * y0
mac3(&mut p.data[..], x0, y0);
p = p.normalize();
add2(&mut acc[..], &p.data[..]);
add2(&mut acc[b..], &p.data[..]);
// p1 = (x1 - x0) * (y1 - y0)
// We do this one last, since it may be negative and acc can't ever be negative:
let j0 = sub_sign(x1, x0);
let j1 = sub_sign(y1, y0);
match j0.sign * j1.sign {
Plus => {
p.data.truncate(0);
p.data.extend(repeat(0).take(len));
mac3(&mut p.data[..], &j0.data.data[..], &j1.data.data[..]);
p = p.normalize();
sub2(&mut acc[b..], &p.data[..]);
},
Minus => {
mac3(&mut acc[b..], &j0.data.data[..], &j1.data.data[..]);
},
NoSign => (),
}
}
}
fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
let len = x.len() + y.len() + 1;
let mut prod = BigUint { data: vec![0; len] };
mac3(&mut prod.data[..], x, y);
prod.normalize()
}
impl<'a, 'b> Mul<&'b BigUint> for &'a BigUint {
type Output = BigUint;
#[inline]
fn mul(self, other: &BigUint) -> BigUint {
mul3(&self.data[..], &other.data[..])
}
}
fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
let mut rem = 0;
for d in a.data.iter_mut().rev() {
let (q, r) = div_wide(rem, *d, b);
*d = q;
rem = r;
}
(a.normalize(), rem)
}
forward_all_binop_to_ref_ref!(impl Div for BigUint, div);
impl<'a, 'b> Div<&'b BigUint> for &'a BigUint {
type Output = BigUint;
#[inline]
fn div(self, other: &BigUint) -> BigUint {
let (q, _) = self.div_rem(other);
return q;
}
}
forward_all_binop_to_ref_ref!(impl Rem for BigUint, rem);
impl<'a, 'b> Rem<&'b BigUint> for &'a BigUint {
type Output = BigUint;
#[inline]
fn rem(self, other: &BigUint) -> BigUint {
let (_, r) = self.div_rem(other);
return r;
}
}
impl Neg for BigUint {
type Output = BigUint;
#[inline]
fn neg(self) -> BigUint { panic!() }
}
impl<'a> Neg for &'a BigUint {
type Output = BigUint;
#[inline]
fn neg(self) -> BigUint { panic!() }
}
impl CheckedAdd for BigUint {
#[inline]
fn checked_add(&self, v: &BigUint) -> Option<BigUint> {
return Some(self.add(v));
}
}
impl CheckedSub for BigUint {
#[inline]
fn checked_sub(&self, v: &BigUint) -> Option<BigUint> {
match self.cmp(v) {
Less => None,
Equal => Some(Zero::zero()),
Greater => Some(self.sub(v)),
}
}
}
impl CheckedMul for BigUint {
#[inline]
fn checked_mul(&self, v: &BigUint) -> Option<BigUint> {
return Some(self.mul(v));
}
}
impl CheckedDiv for BigUint {
#[inline]
fn checked_div(&self, v: &BigUint) -> Option<BigUint> {
if v.is_zero() {
return None;
}
return Some(self.div(v));
}
}
impl Integer for BigUint {
#[inline]
fn div_rem(&self, other: &BigUint) -> (BigUint, BigUint) {
self.div_mod_floor(other)
}
#[inline]
fn div_floor(&self, other: &BigUint) -> BigUint {
let (d, _) = self.div_mod_floor(other);
return d;
}
#[inline]
fn mod_floor(&self, other: &BigUint) -> BigUint {
let (_, m) = self.div_mod_floor(other);
return m;
}
fn div_mod_floor(&self, other: &BigUint) -> (BigUint, BigUint) {
if other.is_zero() { panic!() }
if self.is_zero() { return (Zero::zero(), Zero::zero()); }
if *other == One::one() { return (self.clone(), Zero::zero()); }
/* Required or the q_len calculation below can underflow: */
match self.cmp(other) {
Less => return (Zero::zero(), self.clone()),
Equal => return (One::one(), Zero::zero()),
Greater => {} // Do nothing
}
/*
* This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
*
* First, normalize the arguments so the highest bit in the highest digit of the divisor is
* set: the main loop uses the highest digit of the divisor for generating guesses, so we
* want it to be the largest number we can efficiently divide by.
*/
let shift = other.data.last().unwrap().leading_zeros() as usize;
let mut a = self << shift;
let b = other << shift;
/*
* The algorithm works by incrementally calculating "guesses", q0, for part of the
* remainder. Once we have any number q0 such that q0 * b <= a, we can set
*
* q += q0
* a -= q0 * b
*
* and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
*
* q0, our guess, is calculated by dividing the last few digits of a by the last digit of b
* - this should give us a guess that is "close" to the actual quotient, but is possibly
* greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction
* until we have a guess such that q0 & b <= a.
*/
let bn = *b.data.last().unwrap();
let q_len = a.data.len() - b.data.len() + 1;
let mut q = BigUint { data: vec![0; q_len] };
/*
* We reuse the same temporary to avoid hitting the allocator in our inner loop - this is
* sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0
* can be bigger).
*/
let mut tmp = BigUint { data: Vec::with_capacity(2) };
for j in (0..q_len).rev() {
/*
* When calculating our next guess q0, we don't need to consider the digits below j
* + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from
* digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those
* two numbers will be zero in all digits up to (j + b.data.len() - 1).
*/
let offset = j + b.data.len() - 1;
if offset >= a.data.len() {
continue;
}
/* just avoiding a heap allocation: */
let mut a0 = tmp;
a0.data.truncate(0);
a0.data.extend(a.data[offset..].iter().cloned());
/*
* q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts
* implicitly at the end, when adding and subtracting to a and q. Not only do we
* save the cost of the shifts, the rest of the arithmetic gets to work with
* smaller numbers.
*/
let (mut q0, _) = div_rem_digit(a0, bn);
let mut prod = &b * &q0;
while cmp_slice(&prod.data[..], &a.data[j..]) == Greater {
let one: BigUint = One::one();
q0 = q0 - one;
prod = prod - &b;
}
add2(&mut q.data[j..], &q0.data[..]);
sub2(&mut a.data[j..], &prod.data[..]);
a = a.normalize();
tmp = q0;
}
debug_assert!(a < b);
(q.normalize(), a >> shift)
}
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
///
/// The result is always positive.
#[inline]
fn gcd(&self, other: &BigUint) -> BigUint {
// Use Euclid's algorithm
let mut m = (*self).clone();
let mut n = (*other).clone();
while !m.is_zero() {
let temp = m;
m = n % &temp;
n = temp;
}
return n;
}
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &BigUint) -> BigUint { ((self * other) / self.gcd(other)) }
/// Deprecated, use `is_multiple_of` instead.
#[inline]
fn divides(&self, other: &BigUint) -> bool { self.is_multiple_of(other) }
/// Returns `true` if the number is a multiple of `other`.
#[inline]
fn is_multiple_of(&self, other: &BigUint) -> bool { (self % other).is_zero() }
/// Returns `true` if the number is divisible by `2`.
#[inline]
fn is_even(&self) -> bool {
// Considering only the last digit.
match self.data.first() {
Some(x) => x.is_even(),
None => true
}
}
/// Returns `true` if the number is not divisible by `2`.
#[inline]
fn is_odd(&self) -> bool { !self.is_even() }
}
impl ToPrimitive for BigUint {
#[inline]
fn to_i64(&self) -> Option<i64> {
self.to_u64().and_then(|n| {
// If top bit of u64 is set, it's too large to convert to i64.
if n >> 63 == 0 {
Some(n as i64)
} else {
None
}
})
}
// `DoubleBigDigit` size dependent
#[inline]
fn to_u64(&self) -> Option<u64> {
match self.data.len() {
0 => Some(0),
1 => Some(self.data[0] as u64),
2 => Some(big_digit::to_doublebigdigit(self.data[1], self.data[0])
as u64),
_ => None
}
}
// `DoubleBigDigit` size dependent
#[inline]
fn to_f32(&self) -> Option<f32> {
match self.data.len() {
0 => Some(f32::zero()),
1 => Some(self.data[0] as f32),
len => {
// this will prevent any overflow of exponent
if len > (f32::MAX_EXP as usize) / big_digit::BITS {
None
} else {
let exponent = (len - 2) * big_digit::BITS;
// we need 25 significant digits, 24 to be stored and 1 for rounding
// this gives at least 33 significant digits
let mantissa = big_digit::to_doublebigdigit(self.data[len - 1], self.data[len - 2]);
// this cast handles rounding
let ret = (mantissa as f32) * 2.0.powi(exponent as i32);
if ret.is_infinite() {
None
} else {
Some(ret)
}
}
}
}
}
// `DoubleBigDigit` size dependent
#[inline]
fn to_f64(&self) -> Option<f64> {
match self.data.len() {
0 => Some(f64::zero()),
1 => Some(self.data[0] as f64),
2 => Some(big_digit::to_doublebigdigit(self.data[1], self.data[0]) as f64),
len => {
// this will prevent any overflow of exponent
if len > (f64::MAX_EXP as usize) / big_digit::BITS {
None
} else {
let mut exponent = (len - 2) * big_digit::BITS;
let mut mantissa = big_digit::to_doublebigdigit(self.data[len - 1], self.data[len - 2]);
// we need at least 54 significant bit digits, 53 to be stored and 1 for rounding
// so we take enough from the next BigDigit to make it up to 64
let shift = mantissa.leading_zeros() as usize;
if shift > 0 {
mantissa <<= shift;
mantissa |= self.data[len - 3] as u64 >> (big_digit::BITS - shift);
exponent -= shift;
}
// this cast handles rounding
let ret = (mantissa as f64) * 2.0.powi(exponent as i32);
if ret.is_infinite() {
None
} else {
Some(ret)
}
}
}
}
}
}
impl FromPrimitive for BigUint {
#[inline]
fn from_i64(n: i64) -> Option<BigUint> {
if n >= 0 {
Some(BigUint::from(n as u64))
} else {
None
}
}
#[inline]
fn from_u64(n: u64) -> Option<BigUint> {
Some(BigUint::from(n))
}
#[inline]
fn from_f64(mut n: f64) -> Option<BigUint> {
// handle NAN, INFINITY, NEG_INFINITY
if !n.is_finite() {
return None;
}
// match the rounding of casting from float to int
n = n.trunc();
// handle 0.x, -0.x
if n.is_zero() {
return Some(BigUint::zero());
}
let (mantissa, exponent, sign) = Float::integer_decode(n);
if sign == -1 {
return None;
}
let mut ret = BigUint::from(mantissa);
if exponent > 0 {
ret = ret << exponent as usize;
} else if exponent < 0 {
ret = ret >> (-exponent) as usize;
}
Some(ret)
}
}
impl From<u64> for BigUint {
// `DoubleBigDigit` size dependent
#[inline]
fn from(n: u64) -> Self {
match big_digit::from_doublebigdigit(n) {
(0, 0) => BigUint::zero(),
(0, n0) => BigUint { data: vec![n0] },
(n1, n0) => BigUint { data: vec![n0, n1] },
}
}
}
macro_rules! impl_biguint_from_uint {
($T:ty) => {
impl From<$T> for BigUint {
#[inline]
fn from(n: $T) -> Self {
BigUint::from(n as u64)
}
}
}
}
impl_biguint_from_uint!(u8);
impl_biguint_from_uint!(u16);
impl_biguint_from_uint!(u32);
impl_biguint_from_uint!(usize);
/// A generic trait for converting a value to a `BigUint`.
pub trait ToBigUint {
/// Converts the value of `self` to a `BigUint`.
fn to_biguint(&self) -> Option<BigUint>;
}
impl ToBigUint for BigInt {
#[inline]
fn to_biguint(&self) -> Option<BigUint> {
if self.sign == Plus {
Some(self.data.clone())
} else if self.sign == NoSign {
Some(Zero::zero())
} else {
None
}
}
}
impl ToBigUint for BigUint {
#[inline]
fn to_biguint(&self) -> Option<BigUint> {
Some(self.clone())
}
}
macro_rules! impl_to_biguint {
($T:ty, $from_ty:path) => {
impl ToBigUint for $T {
#[inline]
fn to_biguint(&self) -> Option<BigUint> {
$from_ty(*self)
}
}
}
}
impl_to_biguint!(isize, FromPrimitive::from_isize);
impl_to_biguint!(i8, FromPrimitive::from_i8);
impl_to_biguint!(i16, FromPrimitive::from_i16);
impl_to_biguint!(i32, FromPrimitive::from_i32);
impl_to_biguint!(i64, FromPrimitive::from_i64);
impl_to_biguint!(usize, FromPrimitive::from_usize);
impl_to_biguint!(u8, FromPrimitive::from_u8);
impl_to_biguint!(u16, FromPrimitive::from_u16);
impl_to_biguint!(u32, FromPrimitive::from_u32);
impl_to_biguint!(u64, FromPrimitive::from_u64);
impl_to_biguint!(f32, FromPrimitive::from_f32);
impl_to_biguint!(f64, FromPrimitive::from_f64);
// Extract bitwise digits that evenly divide BigDigit
fn to_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits == 0);
let last_i = u.data.len() - 1;
let mask: BigDigit = (1 << bits) - 1;
let digits_per_big_digit = big_digit::BITS / bits;
let digits = (u.bits() + bits - 1) / bits;
let mut res = Vec::with_capacity(digits);
for mut r in u.data[..last_i].iter().cloned() {
for _ in 0..digits_per_big_digit {
res.push((r & mask) as u8);
r >>= bits;
}
}
let mut r = u.data[last_i];
while r != 0 {
res.push((r & mask) as u8);
r >>= bits;
}
res
}
// Extract bitwise digits that don't evenly divide BigDigit
fn to_inexact_bitwise_digits_le(u: &BigUint, bits: usize) -> Vec<u8> {
debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits != 0);
let last_i = u.data.len() - 1;
let mask: DoubleBigDigit = (1 << bits) - 1;
let digits = (u.bits() + bits - 1) / bits;
let mut res = Vec::with_capacity(digits);
let mut r = 0;
let mut rbits = 0;
for hi in u.data[..last_i].iter().cloned() {
r |= (hi as DoubleBigDigit) << rbits;
rbits += big_digit::BITS;
while rbits >= bits {
res.push((r & mask) as u8);
r >>= bits;
rbits -= bits;
}
}
r |= (u.data[last_i] as DoubleBigDigit) << rbits;
while r != 0 {
res.push((r & mask) as u8);
r >>= bits;
}
res
}
// Extract little-endian radix digits
#[inline(always)] // forced inline to get const-prop for radix=10
fn to_radix_digits_le(u: &BigUint, radix: u32) -> Vec<u8> {
debug_assert!(!u.is_zero() && !radix.is_power_of_two());
// Estimate how big the result will be, so we can pre-allocate it.
let radix_digits = ((u.bits() as f64) / (radix as f64).log2()).ceil();
let mut res = Vec::with_capacity(radix_digits as usize);
let mut digits = u.clone();
let (base, power) = get_radix_base(radix);
debug_assert!(base < (1 << 32));
let base = base as BigDigit;
while digits.data.len() > 1 {
let (q, mut r) = div_rem_digit(digits, base);
for _ in 0..power {
res.push((r % radix) as u8);
r /= radix;
}
digits = q;
}
let mut r = digits.data[0];
while r != 0 {
res.push((r % radix) as u8);
r /= radix;
}
res
}
fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec<u8> {
assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
if u.is_zero() {
return vec![b'0']
}
let mut res = if radix.is_power_of_two() {
// Powers of two can use bitwise masks and shifting instead of division
let bits = radix.trailing_zeros() as usize;
if big_digit::BITS % bits == 0 {
to_bitwise_digits_le(u, bits)
} else {
to_inexact_bitwise_digits_le(u, bits)
}
} else if radix == 10 {
// 10 is so common that it's worth separating out for const-propagation.
// Optimizers can often turn constant division into a faster multiplication.
to_radix_digits_le(u, 10)
} else {
to_radix_digits_le(u, radix)
};
// Now convert everything to ASCII digits.
for r in &mut res {
debug_assert!((*r as u32) < radix);
if *r < 10 {
*r += b'0';
} else {
*r += b'a' - 10;
}
}
res
}
impl BigUint {
/// Creates and initializes a `BigUint`.
///
/// The digits are in little-endian base 2^32.
#[inline]
pub fn new(digits: Vec<BigDigit>) -> BigUint {
BigUint { data: digits }.normalize()
}
/// Creates and initializes a `BigUint`.
///
/// The digits are in little-endian base 2^32.
#[inline]
pub fn from_slice(slice: &[BigDigit]) -> BigUint {
BigUint::new(slice.to_vec())
}
/// Creates and initializes a `BigUint`.
///
/// The bytes are in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num::bigint::BigUint;
///
/// assert_eq!(BigUint::from_bytes_be(b"A"),
/// BigUint::parse_bytes(b"65", 10).unwrap());
/// assert_eq!(BigUint::from_bytes_be(b"AA"),
/// BigUint::parse_bytes(b"16705", 10).unwrap());
/// assert_eq!(BigUint::from_bytes_be(b"AB"),
/// BigUint::parse_bytes(b"16706", 10).unwrap());
/// assert_eq!(BigUint::from_bytes_be(b"Hello world!"),
/// BigUint::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
/// ```
#[inline]
pub fn from_bytes_be(bytes: &[u8]) -> BigUint {
if bytes.is_empty() {
Zero::zero()
} else {
let mut v = bytes.to_vec();
v.reverse();
BigUint::from_bytes_le(&*v)
}
}
/// Creates and initializes a `BigUint`.
///
/// The bytes are in little-endian byte order.
#[inline]
pub fn from_bytes_le(bytes: &[u8]) -> BigUint {
if bytes.is_empty() {
Zero::zero()
} else {
from_bitwise_digits_le(bytes, 8)
}
}
/// Returns the byte representation of the `BigUint` in little-endian byte order.
///
/// # Examples
///
/// ```
/// use num::bigint::BigUint;
///
/// let i = BigUint::parse_bytes(b"1125", 10).unwrap();
/// assert_eq!(i.to_bytes_le(), vec![101, 4]);
/// ```
#[inline]
pub fn to_bytes_le(&self) -> Vec<u8> {
if self.is_zero() {
vec![0]
} else {
to_bitwise_digits_le(self, 8)
}
}
/// Returns the byte representation of the `BigUint` in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num::bigint::BigUint;
///
/// let i = BigUint::parse_bytes(b"1125", 10).unwrap();
/// assert_eq!(i.to_bytes_be(), vec![4, 101]);
/// ```
#[inline]
pub fn to_bytes_be(&self) -> Vec<u8> {
let mut v = self.to_bytes_le();
v.reverse();
v
}
/// Returns the integer formatted as a string in the given radix.
/// `radix` must be in the range `[2, 36]`.
///
/// # Examples
///
/// ```
/// use num::bigint::BigUint;
///
/// let i = BigUint::parse_bytes(b"ff", 16).unwrap();
/// assert_eq!(i.to_str_radix(16), "ff");
/// ```
#[inline]
pub fn to_str_radix(&self, radix: u32) -> String {
let mut v = to_str_radix_reversed(self, radix);
v.reverse();
unsafe { String::from_utf8_unchecked(v) }
}
/// Creates and initializes a `BigUint`.
///
/// # Examples
///
/// ```
/// use num::bigint::{BigUint, ToBigUint};
///
/// assert_eq!(BigUint::parse_bytes(b"1234", 10), ToBigUint::to_biguint(&1234));
/// assert_eq!(BigUint::parse_bytes(b"ABCD", 16), ToBigUint::to_biguint(&0xABCD));
/// assert_eq!(BigUint::parse_bytes(b"G", 16), None);
/// ```
#[inline]
pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigUint> {
str::from_utf8(buf).ok().and_then(|s| BigUint::from_str_radix(s, radix).ok())
}
/// Determines the fewest bits necessary to express the `BigUint`.
pub fn bits(&self) -> usize {
if self.is_zero() { return 0; }
let zeros = self.data.last().unwrap().leading_zeros();
return self.data.len()*big_digit::BITS - zeros as usize;
}
/// Strips off trailing zero bigdigits - comparisons require the last element in the vector to
/// be nonzero.
#[inline]
fn normalize(mut self) -> BigUint {
while let Some(&0) = self.data.last() {
self.data.pop();
}
self
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for BigUint {
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error> where
S: serde::Serializer
{
self.data.serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl serde::Deserialize for BigUint {
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error> where
D: serde::Deserializer,
{
let data = try!(Vec::deserialize(deserializer));
Ok(BigUint {
data: data,
})
}
}
// `DoubleBigDigit` size dependent
/// Returns the greatest power of the radix <= big_digit::BASE
#[inline]
fn get_radix_base(radix: u32) -> (DoubleBigDigit, usize) {
// To generate this table:
// let target = std::u32::max as u64 + 1;
// for radix in 2u64..37 {
// let power = (target as f64).log(radix as f64) as u32;
// let base = radix.pow(power);
// println!("({:10}, {:2}), // {:2}", base, power, radix);
// }
const BASES: [(DoubleBigDigit, usize); 37] = [
(0, 0), (0, 0),
(4294967296, 32), // 2
(3486784401, 20), // 3
(4294967296, 16), // 4
(1220703125, 13), // 5
(2176782336, 12), // 6
(1977326743, 11), // 7
(1073741824, 10), // 8
(3486784401, 10), // 9
(1000000000, 9), // 10
(2357947691, 9), // 11
( 429981696, 8), // 12
( 815730721, 8), // 13
(1475789056, 8), // 14
(2562890625, 8), // 15
(4294967296, 8), // 16
( 410338673, 7), // 17
( 612220032, 7), // 18
( 893871739, 7), // 19
(1280000000, 7), // 20
(1801088541, 7), // 21
(2494357888, 7), // 22
(3404825447, 7), // 23
( 191102976, 6), // 24
( 244140625, 6), // 25
( 308915776, 6), // 26
( 387420489, 6), // 27
( 481890304, 6), // 28
( 594823321, 6), // 29
( 729000000, 6), // 30
( 887503681, 6), // 31
(1073741824, 6), // 32
(1291467969, 6), // 33
(1544804416, 6), // 34
(1838265625, 6), // 35
(2176782336, 6), // 36
];
assert!(2 <= radix && radix <= 36, "The radix must be within 2...36");
BASES[radix as usize]
}
/// A Sign is a `BigInt`'s composing element.
#[derive(PartialEq, PartialOrd, Eq, Ord, Copy, Clone, Debug, Hash)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
pub enum Sign { Minus, NoSign, Plus }
impl Neg for Sign {
type Output = Sign;
/// Negate Sign value.
#[inline]
fn neg(self) -> Sign {
match self {
Minus => Plus,
NoSign => NoSign,
Plus => Minus
}
}
}
impl Mul<Sign> for Sign {
type Output = Sign;
#[inline]
fn mul(self, other: Sign) -> Sign {
match (self, other) {
(NoSign, _) | (_, NoSign) => NoSign,
(Plus, Plus) | (Minus, Minus) => Plus,
(Plus, Minus) | (Minus, Plus) => Minus,
}
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for Sign {
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error> where
S: serde::Serializer
{
match *self {
Sign::Minus => (-1i8).serialize(serializer),
Sign::NoSign => 0i8.serialize(serializer),
Sign::Plus => 1i8.serialize(serializer),
}
}
}
#[cfg(feature = "serde")]
impl serde::Deserialize for Sign {
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error> where
D: serde::Deserializer,
{
use serde::de::Error;
let sign: i8 = try!(serde::Deserialize::deserialize(deserializer));
match sign {
-1 => Ok(Sign::Minus),
0 => Ok(Sign::NoSign),
1 => Ok(Sign::Plus),
_ => Err(D::Error::invalid_value("sign must be -1, 0, or 1")),
}
}
}
/// A big signed integer type.
#[derive(Clone, Debug, Hash)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
pub struct BigInt {
sign: Sign,
data: BigUint
}
impl PartialEq for BigInt {
#[inline]
fn eq(&self, other: &BigInt) -> bool {
self.cmp(other) == Equal
}
}
impl Eq for BigInt {}
impl PartialOrd for BigInt {
#[inline]
fn partial_cmp(&self, other: &BigInt) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for BigInt {
#[inline]
fn cmp(&self, other: &BigInt) -> Ordering {
let scmp = self.sign.cmp(&other.sign);
if scmp != Equal { return scmp; }
match self.sign {
NoSign => Equal,
Plus => self.data.cmp(&other.data),
Minus => other.data.cmp(&self.data),
}
}
}
impl Default for BigInt {
#[inline]
fn default() -> BigInt { Zero::zero() }
}
impl fmt::Display for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "", &self.data.to_str_radix(10))
}
}
impl fmt::Binary for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "0b", &self.data.to_str_radix(2))
}
}
impl fmt::Octal for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "0o", &self.data.to_str_radix(8))
}
}
impl fmt::LowerHex for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "0x", &self.data.to_str_radix(16))
}
}
impl fmt::UpperHex for BigInt {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.pad_integral(!self.is_negative(), "0x", &self.data.to_str_radix(16).to_ascii_uppercase())
}
}
impl FromStr for BigInt {
type Err = ParseBigIntError;
#[inline]
fn from_str(s: &str) -> Result<BigInt, ParseBigIntError> {
BigInt::from_str_radix(s, 10)
}
}
impl Num for BigInt {
type FromStrRadixErr = ParseBigIntError;
/// Creates and initializes a BigInt.
#[inline]
fn from_str_radix(mut s: &str, radix: u32) -> Result<BigInt, ParseBigIntError> {
let sign = if s.starts_with('-') {
let tail = &s[1..];
if !tail.starts_with('+') { s = tail }
Minus
} else { Plus };
let bu = try!(BigUint::from_str_radix(s, radix));
Ok(BigInt::from_biguint(sign, bu))
}
}
impl Shl<usize> for BigInt {
type Output = BigInt;
#[inline]
fn shl(self, rhs: usize) -> BigInt { (&self) << rhs }
}
impl<'a> Shl<usize> for &'a BigInt {
type Output = BigInt;
#[inline]
fn shl(self, rhs: usize) -> BigInt {
BigInt::from_biguint(self.sign, &self.data << rhs)
}
}
impl Shr<usize> for BigInt {
type Output = BigInt;
#[inline]
fn shr(self, rhs: usize) -> BigInt {
BigInt::from_biguint(self.sign, self.data >> rhs)
}
}
impl<'a> Shr<usize> for &'a BigInt {
type Output = BigInt;
#[inline]
fn shr(self, rhs: usize) -> BigInt {
BigInt::from_biguint(self.sign, &self.data >> rhs)
}
}
impl Zero for BigInt {
#[inline]
fn zero() -> BigInt {
BigInt::from_biguint(NoSign, Zero::zero())
}
#[inline]
fn is_zero(&self) -> bool { self.sign == NoSign }
}
impl One for BigInt {
#[inline]
fn one() -> BigInt {
BigInt::from_biguint(Plus, One::one())
}
}
impl Signed for BigInt {
#[inline]
fn abs(&self) -> BigInt {
match self.sign {
Plus | NoSign => self.clone(),
Minus => BigInt::from_biguint(Plus, self.data.clone())
}
}
#[inline]
fn abs_sub(&self, other: &BigInt) -> BigInt {
if *self <= *other { Zero::zero() } else { self - other }
}
#[inline]
fn signum(&self) -> BigInt {
match self.sign {
Plus => BigInt::from_biguint(Plus, One::one()),
Minus => BigInt::from_biguint(Minus, One::one()),
NoSign => Zero::zero(),
}
}
#[inline]
fn is_positive(&self) -> bool { self.sign == Plus }
#[inline]
fn is_negative(&self) -> bool { self.sign == Minus }
}
// We want to forward to BigUint::add, but it's not clear how that will go until
// we compare both sign and magnitude. So we duplicate this body for every
// val/ref combination, deferring that decision to BigUint's own forwarding.
macro_rules! bigint_add {
($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => {
match ($a.sign, $b.sign) {
(_, NoSign) => $a_owned,
(NoSign, _) => $b_owned,
// same sign => keep the sign with the sum of magnitudes
(Plus, Plus) | (Minus, Minus) =>
BigInt::from_biguint($a.sign, $a_data + $b_data),
// opposite signs => keep the sign of the larger with the difference of magnitudes
(Plus, Minus) | (Minus, Plus) =>
match $a.data.cmp(&$b.data) {
Less => BigInt::from_biguint($b.sign, $b_data - $a_data),
Greater => BigInt::from_biguint($a.sign, $a_data - $b_data),
Equal => Zero::zero(),
},
}
};
}
impl<'a, 'b> Add<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: &BigInt) -> BigInt {
bigint_add!(self, self.clone(), &self.data, other, other.clone(), &other.data)
}
}
impl<'a> Add<BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: BigInt) -> BigInt {
bigint_add!(self, self.clone(), &self.data, other, other, other.data)
}
}
impl<'a> Add<&'a BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: &BigInt) -> BigInt {
bigint_add!(self, self, self.data, other, other.clone(), &other.data)
}
}
impl Add<BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn add(self, other: BigInt) -> BigInt {
bigint_add!(self, self, self.data, other, other, other.data)
}
}
// We want to forward to BigUint::sub, but it's not clear how that will go until
// we compare both sign and magnitude. So we duplicate this body for every
// val/ref combination, deferring that decision to BigUint's own forwarding.
macro_rules! bigint_sub {
($a:expr, $a_owned:expr, $a_data:expr, $b:expr, $b_owned:expr, $b_data:expr) => {
match ($a.sign, $b.sign) {
(_, NoSign) => $a_owned,
(NoSign, _) => -$b_owned,
// opposite signs => keep the sign of the left with the sum of magnitudes
(Plus, Minus) | (Minus, Plus) =>
BigInt::from_biguint($a.sign, $a_data + $b_data),
// same sign => keep or toggle the sign of the left with the difference of magnitudes
(Plus, Plus) | (Minus, Minus) =>
match $a.data.cmp(&$b.data) {
Less => BigInt::from_biguint(-$a.sign, $b_data - $a_data),
Greater => BigInt::from_biguint($a.sign, $a_data - $b_data),
Equal => Zero::zero(),
},
}
};
}
impl<'a, 'b> Sub<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: &BigInt) -> BigInt {
bigint_sub!(self, self.clone(), &self.data, other, other.clone(), &other.data)
}
}
impl<'a> Sub<BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
bigint_sub!(self, self.clone(), &self.data, other, other, other.data)
}
}
impl<'a> Sub<&'a BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: &BigInt) -> BigInt {
bigint_sub!(self, self, self.data, other, other.clone(), &other.data)
}
}
impl Sub<BigInt> for BigInt {
type Output = BigInt;
#[inline]
fn sub(self, other: BigInt) -> BigInt {
bigint_sub!(self, self, self.data, other, other, other.data)
}
}
forward_all_binop_to_ref_ref!(impl Mul for BigInt, mul);
impl<'a, 'b> Mul<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn mul(self, other: &BigInt) -> BigInt {
BigInt::from_biguint(self.sign * other.sign,
&self.data * &other.data)
}
}
forward_all_binop_to_ref_ref!(impl Div for BigInt, div);
impl<'a, 'b> Div<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn div(self, other: &BigInt) -> BigInt {
let (q, _) = self.div_rem(other);
q
}
}
forward_all_binop_to_ref_ref!(impl Rem for BigInt, rem);
impl<'a, 'b> Rem<&'b BigInt> for &'a BigInt {
type Output = BigInt;
#[inline]
fn rem(self, other: &BigInt) -> BigInt {
let (_, r) = self.div_rem(other);
r
}
}
impl Neg for BigInt {
type Output = BigInt;
#[inline]
fn neg(mut self) -> BigInt {
self.sign = -self.sign;
self
}
}
impl<'a> Neg for &'a BigInt {
type Output = BigInt;
#[inline]
fn neg(self) -> BigInt {
-self.clone()
}
}
impl CheckedAdd for BigInt {
#[inline]
fn checked_add(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.add(v));
}
}
impl CheckedSub for BigInt {
#[inline]
fn checked_sub(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.sub(v));
}
}
impl CheckedMul for BigInt {
#[inline]
fn checked_mul(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.mul(v));
}
}
impl CheckedDiv for BigInt {
#[inline]
fn checked_div(&self, v: &BigInt) -> Option<BigInt> {
if v.is_zero() {
return None;
}
return Some(self.div(v));
}
}
impl Integer for BigInt {
#[inline]
fn div_rem(&self, other: &BigInt) -> (BigInt, BigInt) {
// r.sign == self.sign
let (d_ui, r_ui) = self.data.div_mod_floor(&other.data);
let d = BigInt::from_biguint(self.sign, d_ui);
let r = BigInt::from_biguint(self.sign, r_ui);
if other.is_negative() { (-d, r) } else { (d, r) }
}
#[inline]
fn div_floor(&self, other: &BigInt) -> BigInt {
let (d, _) = self.div_mod_floor(other);
d
}
#[inline]
fn mod_floor(&self, other: &BigInt) -> BigInt {
let (_, m) = self.div_mod_floor(other);
m
}
fn div_mod_floor(&self, other: &BigInt) -> (BigInt, BigInt) {
// m.sign == other.sign
let (d_ui, m_ui) = self.data.div_rem(&other.data);
let d = BigInt::from_biguint(Plus, d_ui);
let m = BigInt::from_biguint(Plus, m_ui);
let one: BigInt = One::one();
match (self.sign, other.sign) {
(_, NoSign) => panic!(),
(Plus, Plus) | (NoSign, Plus) => (d, m),
(Plus, Minus) | (NoSign, Minus) => {
if m.is_zero() {
(-d, Zero::zero())
} else {
(-d - one, m + other)
}
},
(Minus, Plus) => {
if m.is_zero() {
(-d, Zero::zero())
} else {
(-d - one, other - m)
}
}
(Minus, Minus) => (d, -m)
}
}
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`.
///
/// The result is always positive.
#[inline]
fn gcd(&self, other: &BigInt) -> BigInt {
BigInt::from_biguint(Plus, self.data.gcd(&other.data))
}
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &BigInt) -> BigInt {
BigInt::from_biguint(Plus, self.data.lcm(&other.data))
}
/// Deprecated, use `is_multiple_of` instead.
#[inline]
fn divides(&self, other: &BigInt) -> bool { return self.is_multiple_of(other); }
/// Returns `true` if the number is a multiple of `other`.
#[inline]
fn is_multiple_of(&self, other: &BigInt) -> bool { self.data.is_multiple_of(&other.data) }
/// Returns `true` if the number is divisible by `2`.
#[inline]
fn is_even(&self) -> bool { self.data.is_even() }
/// Returns `true` if the number is not divisible by `2`.
#[inline]
fn is_odd(&self) -> bool { self.data.is_odd() }
}
impl ToPrimitive for BigInt {
#[inline]
fn to_i64(&self) -> Option<i64> {
match self.sign {
Plus => self.data.to_i64(),
NoSign => Some(0),
Minus => {
self.data.to_u64().and_then(|n| {
let m: u64 = 1 << 63;
if n < m {
Some(-(n as i64))
} else if n == m {
Some(i64::MIN)
} else {
None
}
})
}
}
}
#[inline]
fn to_u64(&self) -> Option<u64> {
match self.sign {
Plus => self.data.to_u64(),
NoSign => Some(0),
Minus => None
}
}
#[inline]
fn to_f32(&self) -> Option<f32> {
self.data.to_f32().map(|n| if self.sign == Minus { -n } else { n })
}
#[inline]
fn to_f64(&self) -> Option<f64> {
self.data.to_f64().map(|n| if self.sign == Minus { -n } else { n })
}
}
impl FromPrimitive for BigInt {
#[inline]
fn from_i64(n: i64) -> Option<BigInt> {
Some(BigInt::from(n))
}
#[inline]
fn from_u64(n: u64) -> Option<BigInt> {
Some(BigInt::from(n))
}
#[inline]
fn from_f64(n: f64) -> Option<BigInt> {
if n >= 0.0 {
BigUint::from_f64(n).map(|x| BigInt::from_biguint(Plus, x))
} else {
BigUint::from_f64(-n).map(|x| BigInt::from_biguint(Minus, x))
}
}
}
impl From<i64> for BigInt {
#[inline]
fn from(n: i64) -> Self {
if n >= 0 {
BigInt::from(n as u64)
} else {
let u = u64::MAX - (n as u64) + 1;
BigInt { sign: Minus, data: BigUint::from(u) }
}
}
}
macro_rules! impl_bigint_from_int {
($T:ty) => {
impl From<$T> for BigInt {
#[inline]
fn from(n: $T) -> Self {
BigInt::from(n as i64)
}
}
}
}
impl_bigint_from_int!(i8);
impl_bigint_from_int!(i16);
impl_bigint_from_int!(i32);
impl_bigint_from_int!(isize);
impl From<u64> for BigInt {
#[inline]
fn from(n: u64) -> Self {
if n > 0 {
BigInt { sign: Plus, data: BigUint::from(n) }
} else {
BigInt::zero()
}
}
}
macro_rules! impl_bigint_from_uint {
($T:ty) => {
impl From<$T> for BigInt {
#[inline]
fn from(n: $T) -> Self {
BigInt::from(n as u64)
}
}
}
}
impl_bigint_from_uint!(u8);
impl_bigint_from_uint!(u16);
impl_bigint_from_uint!(u32);
impl_bigint_from_uint!(usize);
impl From<BigUint> for BigInt {
#[inline]
fn from(n: BigUint) -> Self {
if n.is_zero() {
BigInt::zero()
} else {
BigInt { sign: Plus, data: n }
}
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for BigInt {
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error> where
S: serde::Serializer
{
(self.sign, &self.data).serialize(serializer)
}
}
#[cfg(feature = "serde")]
impl serde::Deserialize for BigInt {
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error> where
D: serde::Deserializer,
{
let (sign, data) = try!(serde::Deserialize::deserialize(deserializer));
Ok(BigInt {
sign: sign,
data: data,
})
}
}
/// A generic trait for converting a value to a `BigInt`.
pub trait ToBigInt {
/// Converts the value of `self` to a `BigInt`.
fn to_bigint(&self) -> Option<BigInt>;
}
impl ToBigInt for BigInt {
#[inline]
fn to_bigint(&self) -> Option<BigInt> {
Some(self.clone())
}
}
impl ToBigInt for BigUint {
#[inline]
fn to_bigint(&self) -> Option<BigInt> {
if self.is_zero() {
Some(Zero::zero())
} else {
Some(BigInt { sign: Plus, data: self.clone() })
}
}
}
macro_rules! impl_to_bigint {
($T:ty, $from_ty:path) => {
impl ToBigInt for $T {
#[inline]
fn to_bigint(&self) -> Option<BigInt> {
$from_ty(*self)
}
}
}
}
impl_to_bigint!(isize, FromPrimitive::from_isize);
impl_to_bigint!(i8, FromPrimitive::from_i8);
impl_to_bigint!(i16, FromPrimitive::from_i16);
impl_to_bigint!(i32, FromPrimitive::from_i32);
impl_to_bigint!(i64, FromPrimitive::from_i64);
impl_to_bigint!(usize, FromPrimitive::from_usize);
impl_to_bigint!(u8, FromPrimitive::from_u8);
impl_to_bigint!(u16, FromPrimitive::from_u16);
impl_to_bigint!(u32, FromPrimitive::from_u32);
impl_to_bigint!(u64, FromPrimitive::from_u64);
impl_to_bigint!(f32, FromPrimitive::from_f32);
impl_to_bigint!(f64, FromPrimitive::from_f64);
pub trait RandBigInt {
/// Generate a random `BigUint` of the given bit size.
fn gen_biguint(&mut self, bit_size: usize) -> BigUint;
/// Generate a random BigInt of the given bit size.
fn gen_bigint(&mut self, bit_size: usize) -> BigInt;
/// Generate a random `BigUint` less than the given bound. Fails
/// when the bound is zero.
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint;
/// Generate a random `BigUint` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_biguint_range(&mut self, lbound: &BigUint, ubound: &BigUint) -> BigUint;
/// Generate a random `BigInt` within the given range. The lower
/// bound is inclusive; the upper bound is exclusive. Fails when
/// the upper bound is not greater than the lower bound.
fn gen_bigint_range(&mut self, lbound: &BigInt, ubound: &BigInt) -> BigInt;
}
#[cfg(any(feature = "rand", test))]
impl<R: Rng> RandBigInt for R {
fn gen_biguint(&mut self, bit_size: usize) -> BigUint {
let (digits, rem) = bit_size.div_rem(&big_digit::BITS);
let mut data = Vec::with_capacity(digits+1);
for _ in 0 .. digits {
data.push(self.gen());
}
if rem > 0 {
let final_digit: BigDigit = self.gen();
data.push(final_digit >> (big_digit::BITS - rem));
}
BigUint::new(data)
}
fn gen_bigint(&mut self, bit_size: usize) -> BigInt {
// Generate a random BigUint...
let biguint = self.gen_biguint(bit_size);
// ...and then randomly assign it a Sign...
let sign = if biguint.is_zero() {
// ...except that if the BigUint is zero, we need to try
// again with probability 0.5. This is because otherwise,
// the probability of generating a zero BigInt would be
// double that of any other number.
if self.gen() {
return self.gen_bigint(bit_size);
} else {
NoSign
}
} else if self.gen() {
Plus
} else {
Minus
};
BigInt::from_biguint(sign, biguint)
}
fn gen_biguint_below(&mut self, bound: &BigUint) -> BigUint {
assert!(!bound.is_zero());
let bits = bound.bits();
loop {
let n = self.gen_biguint(bits);
if n < *bound { return n; }
}
}
fn gen_biguint_range(&mut self,
lbound: &BigUint,
ubound: &BigUint)
-> BigUint {
assert!(*lbound < *ubound);
return lbound + self.gen_biguint_below(&(ubound - lbound));
}
fn gen_bigint_range(&mut self,
lbound: &BigInt,
ubound: &BigInt)
-> BigInt {
assert!(*lbound < *ubound);
let delta = (ubound - lbound).to_biguint().unwrap();
return lbound + self.gen_biguint_below(&delta).to_bigint().unwrap();
}
}
impl BigInt {
/// Creates and initializes a BigInt.
///
/// The digits are in little-endian base 2^32.
#[inline]
pub fn new(sign: Sign, digits: Vec<BigDigit>) -> BigInt {
BigInt::from_biguint(sign, BigUint::new(digits))
}
/// Creates and initializes a `BigInt`.
///
/// The digits are in little-endian base 2^32.
#[inline]
pub fn from_biguint(sign: Sign, data: BigUint) -> BigInt {
if sign == NoSign || data.is_zero() {
return BigInt { sign: NoSign, data: Zero::zero() };
}
BigInt { sign: sign, data: data }
}
/// Creates and initializes a `BigInt`.
#[inline]
pub fn from_slice(sign: Sign, slice: &[BigDigit]) -> BigInt {
BigInt::from_biguint(sign, BigUint::from_slice(slice))
}
/// Creates and initializes a `BigInt`.
///
/// The bytes are in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num::bigint::{BigInt, Sign};
///
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"A"),
/// BigInt::parse_bytes(b"65", 10).unwrap());
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AA"),
/// BigInt::parse_bytes(b"16705", 10).unwrap());
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"AB"),
/// BigInt::parse_bytes(b"16706", 10).unwrap());
/// assert_eq!(BigInt::from_bytes_be(Sign::Plus, b"Hello world!"),
/// BigInt::parse_bytes(b"22405534230753963835153736737", 10).unwrap());
/// ```
#[inline]
pub fn from_bytes_be(sign: Sign, bytes: &[u8]) -> BigInt {
BigInt::from_biguint(sign, BigUint::from_bytes_be(bytes))
}
/// Creates and initializes a `BigInt`.
///
/// The bytes are in little-endian byte order.
#[inline]
pub fn from_bytes_le(sign: Sign, bytes: &[u8]) -> BigInt {
BigInt::from_biguint(sign, BigUint::from_bytes_le(bytes))
}
/// Returns the sign and the byte representation of the `BigInt` in little-endian byte order.
///
/// # Examples
///
/// ```
/// use num::bigint::{ToBigInt, Sign};
///
/// let i = -1125.to_bigint().unwrap();
/// assert_eq!(i.to_bytes_le(), (Sign::Minus, vec![101, 4]));
/// ```
#[inline]
pub fn to_bytes_le(&self) -> (Sign, Vec<u8>) {
(self.sign, self.data.to_bytes_le())
}
/// Returns the sign and the byte representation of the `BigInt` in big-endian byte order.
///
/// # Examples
///
/// ```
/// use num::bigint::{ToBigInt, Sign};
///
/// let i = -1125.to_bigint().unwrap();
/// assert_eq!(i.to_bytes_be(), (Sign::Minus, vec![4, 101]));
/// ```
#[inline]
pub fn to_bytes_be(&self) -> (Sign, Vec<u8>) {
(self.sign, self.data.to_bytes_be())
}
/// Returns the integer formatted as a string in the given radix.
/// `radix` must be in the range `[2, 36]`.
///
/// # Examples
///
/// ```
/// use num::bigint::BigInt;
///
/// let i = BigInt::parse_bytes(b"ff", 16).unwrap();
/// assert_eq!(i.to_str_radix(16), "ff");
/// ```
#[inline]
pub fn to_str_radix(&self, radix: u32) -> String {
let mut v = to_str_radix_reversed(&self.data, radix);
if self.is_negative() {
v.push(b'-');
}
v.reverse();
unsafe { String::from_utf8_unchecked(v) }
}
/// Returns the sign of the `BigInt` as a `Sign`.
///
/// # Examples
///
/// ```
/// use num::bigint::{ToBigInt, Sign};
///
/// assert_eq!(ToBigInt::to_bigint(&1234).unwrap().sign(), Sign::Plus);
/// assert_eq!(ToBigInt::to_bigint(&-4321).unwrap().sign(), Sign::Minus);
/// assert_eq!(ToBigInt::to_bigint(&0).unwrap().sign(), Sign::NoSign);
/// ```
#[inline]
pub fn sign(&self) -> Sign {
self.sign
}
/// Creates and initializes a `BigInt`.
///
/// # Examples
///
/// ```
/// use num::bigint::{BigInt, ToBigInt};
///
/// assert_eq!(BigInt::parse_bytes(b"1234", 10), ToBigInt::to_bigint(&1234));
/// assert_eq!(BigInt::parse_bytes(b"ABCD", 16), ToBigInt::to_bigint(&0xABCD));
/// assert_eq!(BigInt::parse_bytes(b"G", 16), None);
/// ```
#[inline]
pub fn parse_bytes(buf: &[u8], radix: u32) -> Option<BigInt> {
str::from_utf8(buf).ok().and_then(|s| BigInt::from_str_radix(s, radix).ok())
}
/// Determines the fewest bits necessary to express the `BigInt`,
/// not including the sign.
pub fn bits(&self) -> usize {
self.data.bits()
}
/// Converts this `BigInt` into a `BigUint`, if it's not negative.
#[inline]
pub fn to_biguint(&self) -> Option<BigUint> {
match self.sign {
Plus => Some(self.data.clone()),
NoSign => Some(Zero::zero()),
Minus => None
}
}
#[inline]
pub fn checked_add(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.add(v));
}
#[inline]
pub fn checked_sub(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.sub(v));
}
#[inline]
pub fn checked_mul(&self, v: &BigInt) -> Option<BigInt> {
return Some(self.mul(v));
}
#[inline]
pub fn checked_div(&self, v: &BigInt) -> Option<BigInt> {
if v.is_zero() {
return None;
}
return Some(self.div(v));
}
}
#[derive(Debug, PartialEq)]
pub enum ParseBigIntError {
ParseInt(ParseIntError),
Other,
}
impl fmt::Display for ParseBigIntError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
&ParseBigIntError::ParseInt(ref e) => e.fmt(f),
&ParseBigIntError::Other => "failed to parse provided string".fmt(f)
}
}
}
impl Error for ParseBigIntError {
fn description(&self) -> &str { "failed to parse bigint/biguint" }
}
impl From<ParseIntError> for ParseBigIntError {
fn from(err: ParseIntError) -> ParseBigIntError {
ParseBigIntError::ParseInt(err)
}
}
#[cfg(test)]
mod biguint_tests {
use Integer;
use super::{BigDigit, BigUint, ToBigUint, big_digit};
use super::{BigInt, RandBigInt, ToBigInt};
use super::Sign::Plus;
use std::cmp::Ordering::{Less, Equal, Greater};
use std::{f32, f64};
use std::i64;
use std::iter::repeat;
use std::str::FromStr;
use std::{u8, u16, u32, u64, usize};
use rand::thread_rng;
use {Num, Zero, One, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv};
use {ToPrimitive, FromPrimitive};
use Float;
/// Assert that an op works for all val/ref combinations
macro_rules! assert_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_eq!((&$left) $op (&$right), $expected);
assert_eq!((&$left) $op $right.clone(), $expected);
assert_eq!($left.clone() $op (&$right), $expected);
assert_eq!($left.clone() $op $right.clone(), $expected);
};
}
#[test]
fn test_from_slice() {
fn check(slice: &[BigDigit], data: &[BigDigit]) {
assert!(BigUint::from_slice(slice).data == data);
}
check(&[1], &[1]);
check(&[0, 0, 0], &[]);
check(&[1, 2, 0, 0], &[1, 2]);
check(&[0, 0, 1, 2], &[0, 0, 1, 2]);
check(&[0, 0, 1, 2, 0, 0], &[0, 0, 1, 2]);
check(&[-1i32 as BigDigit], &[-1i32 as BigDigit]);
}
#[test]
fn test_from_bytes_be() {
fn check(s: &str, result: &str) {
assert_eq!(BigUint::from_bytes_be(s.as_bytes()),
BigUint::parse_bytes(result.as_bytes(), 10).unwrap());
}
check("A", "65");
check("AA", "16705");
check("AB", "16706");
check("Hello world!", "22405534230753963835153736737");
assert_eq!(BigUint::from_bytes_be(&[]), Zero::zero());
}
#[test]
fn test_to_bytes_be() {
fn check(s: &str, result: &str) {
let b = BigUint::parse_bytes(result.as_bytes(), 10).unwrap();
assert_eq!(b.to_bytes_be(), s.as_bytes());
}
check("A", "65");
check("AA", "16705");
check("AB", "16706");
check("Hello world!", "22405534230753963835153736737");
let b: BigUint = Zero::zero();
assert_eq!(b.to_bytes_be(), [0]);
// Test with leading/trailing zero bytes and a full BigDigit of value 0
let b = BigUint::from_str_radix("00010000000000000200", 16).unwrap();
assert_eq!(b.to_bytes_be(), [1, 0, 0, 0, 0, 0, 0, 2, 0]);
}
#[test]
fn test_from_bytes_le() {
fn check(s: &str, result: &str) {
assert_eq!(BigUint::from_bytes_le(s.as_bytes()),
BigUint::parse_bytes(result.as_bytes(), 10).unwrap());
}
check("A", "65");
check("AA", "16705");
check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737");
assert_eq!(BigUint::from_bytes_le(&[]), Zero::zero());
}
#[test]
fn test_to_bytes_le() {
fn check(s: &str, result: &str) {
let b = BigUint::parse_bytes(result.as_bytes(), 10).unwrap();
assert_eq!(b.to_bytes_le(), s.as_bytes());
}
check("A", "65");
check("AA", "16705");
check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737");
let b: BigUint = Zero::zero();
assert_eq!(b.to_bytes_le(), [0]);
// Test with leading/trailing zero bytes and a full BigDigit of value 0
let b = BigUint::from_str_radix("00010000000000000200", 16).unwrap();
assert_eq!(b.to_bytes_le(), [0, 2, 0, 0, 0, 0, 0, 0, 1]);
}
#[test]
fn test_cmp() {
let data: [&[_]; 7] = [ &[], &[1], &[2], &[!0], &[0, 1], &[2, 1], &[1, 1, 1] ];
let data: Vec<BigUint> = data.iter().map(|v| BigUint::from_slice(*v)).collect();
for (i, ni) in data.iter().enumerate() {
for (j0, nj) in data[i..].iter().enumerate() {
let j = j0 + i;
if i == j {
assert_eq!(ni.cmp(nj), Equal);
assert_eq!(nj.cmp(ni), Equal);
assert_eq!(ni, nj);
assert!(!(ni != nj));
assert!(ni <= nj);
assert!(ni >= nj);
assert!(!(ni < nj));
assert!(!(ni > nj));
} else {
assert_eq!(ni.cmp(nj), Less);
assert_eq!(nj.cmp(ni), Greater);
assert!(!(ni == nj));
assert!(ni != nj);
assert!(ni <= nj);
assert!(!(ni >= nj));
assert!(ni < nj);
assert!(!(ni > nj));
assert!(!(nj <= ni));
assert!(nj >= ni);
assert!(!(nj < ni));
assert!(nj > ni);
}
}
}
}
#[test]
fn test_hash() {
let a = BigUint::new(vec!());
let b = BigUint::new(vec!(0));
let c = BigUint::new(vec!(1));
let d = BigUint::new(vec!(1,0,0,0,0,0));
let e = BigUint::new(vec!(0,0,0,0,0,1));
assert!(::hash(&a) == ::hash(&b));
assert!(::hash(&b) != ::hash(&c));
assert!(::hash(&c) == ::hash(&d));
assert!(::hash(&d) != ::hash(&e));
}
const BIT_TESTS: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[
// LEFT RIGHT AND OR XOR
( &[], &[], &[], &[], &[] ),
( &[268, 482, 17], &[964, 54], &[260, 34], &[972, 502, 17], &[712, 468, 17] ),
];
#[test]
fn test_bitand() {
for elm in BIT_TESTS {
let (a_vec, b_vec, c_vec, _, _) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert_op!(a & b == c);
assert_op!(b & a == c);
}
}
#[test]
fn test_bitor() {
for elm in BIT_TESTS {
let (a_vec, b_vec, _, c_vec, _) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert_op!(a | b == c);
assert_op!(b | a == c);
}
}
#[test]
fn test_bitxor() {
for elm in BIT_TESTS {
let (a_vec, b_vec, _, _, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert_op!(a ^ b == c);
assert_op!(b ^ a == c);
assert_op!(a ^ c == b);
assert_op!(c ^ a == b);
assert_op!(b ^ c == a);
assert_op!(c ^ b == a);
}
}
#[test]
fn test_shl() {
fn check(s: &str, shift: usize, ans: &str) {
let opt_biguint = BigUint::from_str_radix(s, 16).ok();
let bu = (opt_biguint.unwrap() << shift).to_str_radix(16);
assert_eq!(bu, ans);
}
check("0", 3, "0");
check("1", 3, "8");
check("1\
0000\
0000\
0000\
0001\
0000\
0000\
0000\
0001",
3,
"8\
0000\
0000\
0000\
0008\
0000\
0000\
0000\
0008");
check("1\
0000\
0001\
0000\
0001",
2,
"4\
0000\
0004\
0000\
0004");
check("1\
0001\
0001",
1,
"2\
0002\
0002");
check("\
4000\
0000\
0000\
0000",
3,
"2\
0000\
0000\
0000\
0000");
check("4000\
0000",
2,
"1\
0000\
0000");
check("4000",
2,
"1\
0000");
check("4000\
0000\
0000\
0000",
67,
"2\
0000\
0000\
0000\
0000\
0000\
0000\
0000\
0000");
check("4000\
0000",
35,
"2\
0000\
0000\
0000\
0000");
check("4000",
19,
"2\
0000\
0000");
check("fedc\
ba98\
7654\
3210\
fedc\
ba98\
7654\
3210",
4,
"f\
edcb\
a987\
6543\
210f\
edcb\
a987\
6543\
2100");
check("88887777666655554444333322221111", 16,
"888877776666555544443333222211110000");
}
#[test]
fn test_shr() {
fn check(s: &str, shift: usize, ans: &str) {
let opt_biguint = BigUint::from_str_radix(s, 16).ok();
let bu = (opt_biguint.unwrap() >> shift).to_str_radix(16);
assert_eq!(bu, ans);
}
check("0", 3, "0");
check("f", 3, "1");
check("1\
0000\
0000\
0000\
0001\
0000\
0000\
0000\
0001",
3,
"2000\
0000\
0000\
0000\
2000\
0000\
0000\
0000");
check("1\
0000\
0001\
0000\
0001",
2,
"4000\
0000\
4000\
0000");
check("1\
0001\
0001",
1,
"8000\
8000");
check("2\
0000\
0000\
0000\
0001\
0000\
0000\
0000\
0001",
67,
"4000\
0000\
0000\
0000");
check("2\
0000\
0001\
0000\
0001",
35,
"4000\
0000");
check("2\
0001\
0001",
19,
"4000");
check("1\
0000\
0000\
0000\
0000",
1,
"8000\
0000\
0000\
0000");
check("1\
0000\
0000",
1,
"8000\
0000");
check("1\
0000",
1,
"8000");
check("f\
edcb\
a987\
6543\
210f\
edcb\
a987\
6543\
2100",
4,
"fedc\
ba98\
7654\
3210\
fedc\
ba98\
7654\
3210");
check("888877776666555544443333222211110000", 16,
"88887777666655554444333322221111");
}
const N1: BigDigit = -1i32 as BigDigit;
const N2: BigDigit = -2i32 as BigDigit;
// `DoubleBigDigit` size dependent
#[test]
fn test_convert_i64() {
fn check(b1: BigUint, i: i64) {
let b2: BigUint = FromPrimitive::from_i64(i).unwrap();
assert!(b1 == b2);
assert!(b1.to_i64().unwrap() == i);
}
check(Zero::zero(), 0);
check(One::one(), 1);
check(i64::MAX.to_biguint().unwrap(), i64::MAX);
check(BigUint::new(vec!( )), 0);
check(BigUint::new(vec!( 1 )), (1 << (0*big_digit::BITS)));
check(BigUint::new(vec!(N1 )), (1 << (1*big_digit::BITS)) - 1);
check(BigUint::new(vec!( 0, 1 )), (1 << (1*big_digit::BITS)));
check(BigUint::new(vec!(N1, N1 >> 1)), i64::MAX);
assert_eq!(i64::MIN.to_biguint(), None);
assert_eq!(BigUint::new(vec!(N1, N1 )).to_i64(), None);
assert_eq!(BigUint::new(vec!( 0, 0, 1)).to_i64(), None);
assert_eq!(BigUint::new(vec!(N1, N1, N1)).to_i64(), None);
}
// `DoubleBigDigit` size dependent
#[test]
fn test_convert_u64() {
fn check(b1: BigUint, u: u64) {
let b2: BigUint = FromPrimitive::from_u64(u).unwrap();
assert!(b1 == b2);
assert!(b1.to_u64().unwrap() == u);
}
check(Zero::zero(), 0);
check(One::one(), 1);
check(u64::MIN.to_biguint().unwrap(), u64::MIN);
check(u64::MAX.to_biguint().unwrap(), u64::MAX);
check(BigUint::new(vec!( )), 0);
check(BigUint::new(vec!( 1 )), (1 << (0*big_digit::BITS)));
check(BigUint::new(vec!(N1 )), (1 << (1*big_digit::BITS)) - 1);
check(BigUint::new(vec!( 0, 1)), (1 << (1*big_digit::BITS)));
check(BigUint::new(vec!(N1, N1)), u64::MAX);
assert_eq!(BigUint::new(vec!( 0, 0, 1)).to_u64(), None);
assert_eq!(BigUint::new(vec!(N1, N1, N1)).to_u64(), None);
}
#[test]
fn test_convert_f32() {
fn check(b1: &BigUint, f: f32) {
let b2 = BigUint::from_f32(f).unwrap();
assert_eq!(b1, &b2);
assert_eq!(b1.to_f32().unwrap(), f);
}
check(&BigUint::zero(), 0.0);
check(&BigUint::one(), 1.0);
check(&BigUint::from(u16::MAX), 2.0.powi(16) - 1.0);
check(&BigUint::from(1u64 << 32), 2.0.powi(32));
check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64));
check(&((BigUint::one() << 100) + (BigUint::one() << 123)), 2.0.powi(100) + 2.0.powi(123));
check(&(BigUint::one() << 127), 2.0.powi(127));
check(&(BigUint::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX);
// keeping all 24 digits with the bits at different offsets to the BigDigits
let x: u32 = 0b00000000101111011111011011011101;
let mut f = x as f32;
let mut b = BigUint::from(x);
for _ in 0..64 {
check(&b, f);
f *= 2.0;
b = b << 1;
}
// this number when rounded to f64 then f32 isn't the same as when rounded straight to f32
let n: u64 = 0b0000000000111111111111111111111111011111111111111111111111111111;
assert!((n as f64) as f32 != n as f32);
assert_eq!(BigUint::from(n).to_f32(), Some(n as f32));
// test rounding up with the bits at different offsets to the BigDigits
let mut f = ((1u64 << 25) - 1) as f32;
let mut b = BigUint::from(1u64 << 25);
for _ in 0..64 {
assert_eq!(b.to_f32(), Some(f));
f *= 2.0;
b = b << 1;
}
// rounding
assert_eq!(BigUint::from_f32(-1.0), None);
assert_eq!(BigUint::from_f32(-0.99999), Some(BigUint::zero()));
assert_eq!(BigUint::from_f32(-0.5), Some(BigUint::zero()));
assert_eq!(BigUint::from_f32(-0.0), Some(BigUint::zero()));
assert_eq!(BigUint::from_f32(f32::MIN_POSITIVE / 2.0), Some(BigUint::zero()));
assert_eq!(BigUint::from_f32(f32::MIN_POSITIVE), Some(BigUint::zero()));
assert_eq!(BigUint::from_f32(0.5), Some(BigUint::zero()));
assert_eq!(BigUint::from_f32(0.99999), Some(BigUint::zero()));
assert_eq!(BigUint::from_f32(f32::consts::E), Some(BigUint::from(2u32)));
assert_eq!(BigUint::from_f32(f32::consts::PI), Some(BigUint::from(3u32)));
// special float values
assert_eq!(BigUint::from_f32(f32::NAN), None);
assert_eq!(BigUint::from_f32(f32::INFINITY), None);
assert_eq!(BigUint::from_f32(f32::NEG_INFINITY), None);
assert_eq!(BigUint::from_f32(f32::MIN), None);
// largest BigUint that will round to a finite f32 value
let big_num = (BigUint::one() << 128) - BigUint::one() - (BigUint::one() << (128 - 25));
assert_eq!(big_num.to_f32(), Some(f32::MAX));
assert_eq!((big_num + BigUint::one()).to_f32(), None);
assert_eq!(((BigUint::one() << 128) - BigUint::one()).to_f32(), None);
assert_eq!((BigUint::one() << 128).to_f32(), None);
}
#[test]
fn test_convert_f64() {
fn check(b1: &BigUint, f: f64) {
let b2 = BigUint::from_f64(f).unwrap();
assert_eq!(b1, &b2);
assert_eq!(b1.to_f64().unwrap(), f);
}
check(&BigUint::zero(), 0.0);
check(&BigUint::one(), 1.0);
check(&BigUint::from(u32::MAX), 2.0.powi(32) - 1.0);
check(&BigUint::from(1u64 << 32), 2.0.powi(32));
check(&BigUint::from_slice(&[0, 0, 1]), 2.0.powi(64));
check(&((BigUint::one() << 100) + (BigUint::one() << 152)), 2.0.powi(100) + 2.0.powi(152));
check(&(BigUint::one() << 1023), 2.0.powi(1023));
check(&(BigUint::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX);
// keeping all 53 digits with the bits at different offsets to the BigDigits
let x: u64 = 0b0000000000011110111110110111111101110111101111011111011011011101;
let mut f = x as f64;
let mut b = BigUint::from(x);
for _ in 0..128 {
check(&b, f);
f *= 2.0;
b = b << 1;
}
// test rounding up with the bits at different offsets to the BigDigits
let mut f = ((1u64 << 54) - 1) as f64;
let mut b = BigUint::from(1u64 << 54);
for _ in 0..128 {
assert_eq!(b.to_f64(), Some(f));
f *= 2.0;
b = b << 1;
}
// rounding
assert_eq!(BigUint::from_f64(-1.0), None);
assert_eq!(BigUint::from_f64(-0.99999), Some(BigUint::zero()));
assert_eq!(BigUint::from_f64(-0.5), Some(BigUint::zero()));
assert_eq!(BigUint::from_f64(-0.0), Some(BigUint::zero()));
assert_eq!(BigUint::from_f64(f64::MIN_POSITIVE / 2.0), Some(BigUint::zero()));
assert_eq!(BigUint::from_f64(f64::MIN_POSITIVE), Some(BigUint::zero()));
assert_eq!(BigUint::from_f64(0.5), Some(BigUint::zero()));
assert_eq!(BigUint::from_f64(0.99999), Some(BigUint::zero()));
assert_eq!(BigUint::from_f64(f64::consts::E), Some(BigUint::from(2u32)));
assert_eq!(BigUint::from_f64(f64::consts::PI), Some(BigUint::from(3u32)));
// special float values
assert_eq!(BigUint::from_f64(f64::NAN), None);
assert_eq!(BigUint::from_f64(f64::INFINITY), None);
assert_eq!(BigUint::from_f64(f64::NEG_INFINITY), None);
assert_eq!(BigUint::from_f64(f64::MIN), None);
// largest BigUint that will round to a finite f64 value
let big_num = (BigUint::one() << 1024) - BigUint::one() - (BigUint::one() << (1024 - 54));
assert_eq!(big_num.to_f64(), Some(f64::MAX));
assert_eq!((big_num + BigUint::one()).to_f64(), None);
assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None);
assert_eq!((BigUint::one() << 1024).to_f64(), None);
}
#[test]
fn test_convert_to_bigint() {
fn check(n: BigUint, ans: BigInt) {
assert_eq!(n.to_bigint().unwrap(), ans);
assert_eq!(n.to_bigint().unwrap().to_biguint().unwrap(), n);
}
check(Zero::zero(), Zero::zero());
check(BigUint::new(vec!(1,2,3)),
BigInt::from_biguint(Plus, BigUint::new(vec!(1,2,3))));
}
#[test]
fn test_convert_from_uint() {
macro_rules! check {
($ty:ident, $max:expr) => {
assert_eq!(BigUint::from($ty::zero()), BigUint::zero());
assert_eq!(BigUint::from($ty::one()), BigUint::one());
assert_eq!(BigUint::from($ty::MAX - $ty::one()), $max - BigUint::one());
assert_eq!(BigUint::from($ty::MAX), $max);
}
}
check!(u8, BigUint::from_slice(&[u8::MAX as BigDigit]));
check!(u16, BigUint::from_slice(&[u16::MAX as BigDigit]));
check!(u32, BigUint::from_slice(&[u32::MAX]));
check!(u64, BigUint::from_slice(&[u32::MAX, u32::MAX]));
check!(usize, BigUint::from(usize::MAX as u64));
}
const SUM_TRIPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[
(&[], &[], &[]),
(&[], &[ 1], &[ 1]),
(&[ 1], &[ 1], &[ 2]),
(&[ 1], &[ 1, 1], &[ 2, 1]),
(&[ 1], &[N1], &[ 0, 1]),
(&[ 1], &[N1, N1], &[ 0, 0, 1]),
(&[N1, N1], &[N1, N1], &[N2, N1, 1]),
(&[ 1, 1, 1], &[N1, N1], &[ 0, 1, 2]),
(&[ 2, 2, 1], &[N1, N2], &[ 1, 1, 2])
];
#[test]
fn test_add() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert_op!(a + b == c);
assert_op!(b + a == c);
}
}
#[test]
fn test_sub() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert_op!(c - a == b);
assert_op!(c - b == a);
}
}
#[test]
#[should_panic]
fn test_sub_fail_on_underflow() {
let (a, b) : (BigUint, BigUint) = (Zero::zero(), One::one());
a - b;
}
const M: u32 = ::std::u32::MAX;
const MUL_TRIPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[
(&[], &[], &[]),
(&[], &[ 1], &[]),
(&[ 2], &[], &[]),
(&[ 1], &[ 1], &[1]),
(&[ 2], &[ 3], &[ 6]),
(&[ 1], &[ 1, 1, 1], &[1, 1, 1]),
(&[ 1, 2, 3], &[ 3], &[ 3, 6, 9]),
(&[ 1, 1, 1], &[N1], &[N1, N1, N1]),
(&[ 1, 2, 3], &[N1], &[N1, N2, N2, 2]),
(&[ 1, 2, 3, 4], &[N1], &[N1, N2, N2, N2, 3]),
(&[N1], &[N1], &[ 1, N2]),
(&[N1, N1], &[N1], &[ 1, N1, N2]),
(&[N1, N1, N1], &[N1], &[ 1, N1, N1, N2]),
(&[N1, N1, N1, N1], &[N1], &[ 1, N1, N1, N1, N2]),
(&[ M/2 + 1], &[ 2], &[ 0, 1]),
(&[0, M/2 + 1], &[ 2], &[ 0, 0, 1]),
(&[ 1, 2], &[ 1, 2, 3], &[1, 4, 7, 6]),
(&[N1, N1], &[N1, N1, N1], &[1, 0, N1, N2, N1]),
(&[N1, N1, N1], &[N1, N1, N1, N1], &[1, 0, 0, N1, N2, N1, N1]),
(&[ 0, 0, 1], &[ 1, 2, 3], &[0, 0, 1, 2, 3]),
(&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1])
];
const DIV_REM_QUADRUPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])]
= &[
(&[ 1], &[ 2], &[], &[1]),
(&[ 1, 1], &[ 2], &[ M/2+1], &[1]),
(&[ 1, 1, 1], &[ 2], &[ M/2+1, M/2+1], &[1]),
(&[ 0, 1], &[N1], &[1], &[1]),
(&[N1, N1], &[N2], &[2, 1], &[3])
];
#[test]
fn test_mul() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert_op!(a * b == c);
assert_op!(b * a == c);
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
let d = BigUint::from_slice(d_vec);
assert!(a == &b * &c + &d);
assert!(a == &c * &b + &d);
}
}
#[test]
fn test_div_rem() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
if !a.is_zero() {
assert_op!(c / a == b);
assert_op!(c % a == Zero::zero());
assert_eq!(c.div_rem(&a), (b.clone(), Zero::zero()));
}
if !b.is_zero() {
assert_op!(c / b == a);
assert_op!(c % b == Zero::zero());
assert_eq!(c.div_rem(&b), (a.clone(), Zero::zero()));
}
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
let d = BigUint::from_slice(d_vec);
if !b.is_zero() {
assert_op!(a / b == c);
assert_op!(a % b == d);
assert!(a.div_rem(&b) == (c, d));
}
}
}
#[test]
fn test_checked_add() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert!(a.checked_add(&b).unwrap() == c);
assert!(b.checked_add(&a).unwrap() == c);
}
}
#[test]
fn test_checked_sub() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert!(c.checked_sub(&a).unwrap() == b);
assert!(c.checked_sub(&b).unwrap() == a);
if a > c {
assert!(a.checked_sub(&c).is_none());
}
if b > c {
assert!(b.checked_sub(&c).is_none());
}
}
}
#[test]
fn test_checked_mul() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
assert!(a.checked_mul(&b).unwrap() == c);
assert!(b.checked_mul(&a).unwrap() == c);
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
let d = BigUint::from_slice(d_vec);
assert!(a == b.checked_mul(&c).unwrap() + &d);
assert!(a == c.checked_mul(&b).unwrap() + &d);
}
}
#[test]
fn test_checked_div() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigUint::from_slice(a_vec);
let b = BigUint::from_slice(b_vec);
let c = BigUint::from_slice(c_vec);
if !a.is_zero() {
assert!(c.checked_div(&a).unwrap() == b);
}
if !b.is_zero() {
assert!(c.checked_div(&b).unwrap() == a);
}
assert!(c.checked_div(&Zero::zero()).is_none());
}
}
#[test]
fn test_gcd() {
fn check(a: usize, b: usize, c: usize) {
let big_a: BigUint = FromPrimitive::from_usize(a).unwrap();
let big_b: BigUint = FromPrimitive::from_usize(b).unwrap();
let big_c: BigUint = FromPrimitive::from_usize(c).unwrap();
assert_eq!(big_a.gcd(&big_b), big_c);
}
check(10, 2, 2);
check(10, 3, 1);
check(0, 3, 3);
check(3, 3, 3);
check(56, 42, 14);
}
#[test]
fn test_lcm() {
fn check(a: usize, b: usize, c: usize) {
let big_a: BigUint = FromPrimitive::from_usize(a).unwrap();
let big_b: BigUint = FromPrimitive::from_usize(b).unwrap();
let big_c: BigUint = FromPrimitive::from_usize(c).unwrap();
assert_eq!(big_a.lcm(&big_b), big_c);
}
check(1, 0, 0);
check(0, 1, 0);
check(1, 1, 1);
check(8, 9, 72);
check(11, 5, 55);
check(99, 17, 1683);
}
#[test]
fn test_is_even() {
let one: BigUint = FromStr::from_str("1").unwrap();
let two: BigUint = FromStr::from_str("2").unwrap();
let thousand: BigUint = FromStr::from_str("1000").unwrap();
let big: BigUint = FromStr::from_str("1000000000000000000000").unwrap();
let bigger: BigUint = FromStr::from_str("1000000000000000000001").unwrap();
assert!(one.is_odd());
assert!(two.is_even());
assert!(thousand.is_even());
assert!(big.is_even());
assert!(bigger.is_odd());
assert!((&one << 64).is_even());
assert!(((&one << 64) + one).is_odd());
}
fn to_str_pairs() -> Vec<(BigUint, Vec<(u32, String)>)> {
let bits = big_digit::BITS;
vec!(( Zero::zero(), vec!(
(2, "0".to_string()), (3, "0".to_string())
)), ( BigUint::from_slice(&[ 0xff ]), vec!(
(2, "11111111".to_string()),
(3, "100110".to_string()),
(4, "3333".to_string()),
(5, "2010".to_string()),
(6, "1103".to_string()),
(7, "513".to_string()),
(8, "377".to_string()),
(9, "313".to_string()),
(10, "255".to_string()),
(11, "212".to_string()),
(12, "193".to_string()),
(13, "168".to_string()),
(14, "143".to_string()),
(15, "120".to_string()),
(16, "ff".to_string())
)), ( BigUint::from_slice(&[ 0xfff ]), vec!(
(2, "111111111111".to_string()),
(4, "333333".to_string()),
(16, "fff".to_string())
)), ( BigUint::from_slice(&[ 1, 2 ]), vec!(
(2,
format!("10{}1", repeat("0").take(bits - 1).collect::<String>())),
(4,
format!("2{}1", repeat("0").take(bits / 2 - 1).collect::<String>())),
(10, match bits {
32 => "8589934593".to_string(),
16 => "131073".to_string(),
_ => panic!()
}),
(16,
format!("2{}1", repeat("0").take(bits / 4 - 1).collect::<String>()))
)), ( BigUint::from_slice(&[ 1, 2, 3 ]), vec!(
(2,
format!("11{}10{}1",
repeat("0").take(bits - 2).collect::<String>(),
repeat("0").take(bits - 1).collect::<String>())),
(4,
format!("3{}2{}1",
repeat("0").take(bits / 2 - 1).collect::<String>(),
repeat("0").take(bits / 2 - 1).collect::<String>())),
(8, match bits {
32 => "6000000000100000000001".to_string(),
16 => "140000400001".to_string(),
_ => panic!()
}),
(10, match bits {
32 => "55340232229718589441".to_string(),
16 => "12885032961".to_string(),
_ => panic!()
}),
(16,
format!("3{}2{}1",
repeat("0").take(bits / 4 - 1).collect::<String>(),
repeat("0").take(bits / 4 - 1).collect::<String>()))
)) )
}
#[test]
fn test_to_str_radix() {
let r = to_str_pairs();
for num_pair in r.iter() {
let &(ref n, ref rs) = num_pair;
for str_pair in rs.iter() {
let &(ref radix, ref str) = str_pair;
assert_eq!(n.to_str_radix(*radix), *str);
}
}
}
#[test]
fn test_from_str_radix() {
let r = to_str_pairs();
for num_pair in r.iter() {
let &(ref n, ref rs) = num_pair;
for str_pair in rs.iter() {
let &(ref radix, ref str) = str_pair;
assert_eq!(n,
&BigUint::from_str_radix(str, *radix).unwrap());
}
}
let zed = BigUint::from_str_radix("Z", 10).ok();
assert_eq!(zed, None);
let blank = BigUint::from_str_radix("_", 2).ok();
assert_eq!(blank, None);
let plus_one = BigUint::from_str_radix("+1", 10).ok();
assert_eq!(plus_one, Some(BigUint::from_slice(&[1])));
let plus_plus_one = BigUint::from_str_radix("++1", 10).ok();
assert_eq!(plus_plus_one, None);
let minus_one = BigUint::from_str_radix("-1", 10).ok();
assert_eq!(minus_one, None);
}
#[test]
fn test_all_str_radix() {
use std::ascii::AsciiExt;
let n = BigUint::new((0..10).collect());
for radix in 2..37 {
let s = n.to_str_radix(radix);
let x = BigUint::from_str_radix(&s, radix);
assert_eq!(x.unwrap(), n);
let s = s.to_ascii_uppercase();
let x = BigUint::from_str_radix(&s, radix);
assert_eq!(x.unwrap(), n);
}
}
#[test]
fn test_lower_hex() {
let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:x}", a), "a");
assert_eq!(format!("{:x}", hello), "48656c6c6f20776f726c6421");
assert_eq!(format!("{:♥>+#8x}", a), "♥♥♥♥+0xa");
}
#[test]
fn test_upper_hex() {
let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:X}", a), "A");
assert_eq!(format!("{:X}", hello), "48656C6C6F20776F726C6421");
assert_eq!(format!("{:♥>+#8X}", a), "♥♥♥♥+0xA");
}
#[test]
fn test_binary() {
let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes("224055342307539".as_bytes(), 10).unwrap();
assert_eq!(format!("{:b}", a), "1010");
assert_eq!(format!("{:b}", hello), "110010111100011011110011000101101001100011010011");
assert_eq!(format!("{:♥>+#8b}", a), "♥+0b1010");
}
#[test]
fn test_octal() {
let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:o}", a), "12");
assert_eq!(format!("{:o}", hello), "22062554330674403566756233062041");
assert_eq!(format!("{:♥>+#8o}", a), "♥♥♥+0o12");
}
#[test]
fn test_display() {
let a = BigUint::parse_bytes(b"A", 16).unwrap();
let hello = BigUint::parse_bytes("22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{}", a), "10");
assert_eq!(format!("{}", hello), "22405534230753963835153736737");
assert_eq!(format!("{:♥>+#8}", a), "♥♥♥♥♥+10");
}
#[test]
fn test_factor() {
fn factor(n: usize) -> BigUint {
let mut f: BigUint = One::one();
for i in 2..n + 1 {
// FIXME(#5992): assignment operator overloads
// f *= FromPrimitive::from_usize(i);
let bu: BigUint = FromPrimitive::from_usize(i).unwrap();
f = f * bu;
}
return f;
}
fn check(n: usize, s: &str) {
let n = factor(n);
let ans = match BigUint::from_str_radix(s, 10) {
Ok(x) => x, Err(_) => panic!()
};
assert_eq!(n, ans);
}
check(3, "6");
check(10, "3628800");
check(20, "2432902008176640000");
check(30, "265252859812191058636308480000000");
}
#[test]
fn test_bits() {
assert_eq!(BigUint::new(vec!(0,0,0,0)).bits(), 0);
let n: BigUint = FromPrimitive::from_usize(0).unwrap();
assert_eq!(n.bits(), 0);
let n: BigUint = FromPrimitive::from_usize(1).unwrap();
assert_eq!(n.bits(), 1);
let n: BigUint = FromPrimitive::from_usize(3).unwrap();
assert_eq!(n.bits(), 2);
let n: BigUint = BigUint::from_str_radix("4000000000", 16).unwrap();
assert_eq!(n.bits(), 39);
let one: BigUint = One::one();
assert_eq!((one << 426).bits(), 427);
}
#[test]
fn test_rand() {
let mut rng = thread_rng();
let _n: BigUint = rng.gen_biguint(137);
assert!(rng.gen_biguint(0).is_zero());
}
#[test]
fn test_rand_range() {
let mut rng = thread_rng();
for _ in 0..10 {
assert_eq!(rng.gen_bigint_range(&FromPrimitive::from_usize(236).unwrap(),
&FromPrimitive::from_usize(237).unwrap()),
FromPrimitive::from_usize(236).unwrap());
}
let l = FromPrimitive::from_usize(403469000 + 2352).unwrap();
let u = FromPrimitive::from_usize(403469000 + 3513).unwrap();
for _ in 0..1000 {
let n: BigUint = rng.gen_biguint_below(&u);
assert!(n < u);
let n: BigUint = rng.gen_biguint_range(&l, &u);
assert!(n >= l);
assert!(n < u);
}
}
#[test]
#[should_panic]
fn test_zero_rand_range() {
thread_rng().gen_biguint_range(&FromPrimitive::from_usize(54).unwrap(),
&FromPrimitive::from_usize(54).unwrap());
}
#[test]
#[should_panic]
fn test_negative_rand_range() {
let mut rng = thread_rng();
let l = FromPrimitive::from_usize(2352).unwrap();
let u = FromPrimitive::from_usize(3513).unwrap();
// Switching u and l should fail:
let _n: BigUint = rng.gen_biguint_range(&u, &l);
}
#[test]
fn test_sub_sign() {
use super::sub_sign;
let a = BigInt::from_str_radix("265252859812191058636308480000000", 10).unwrap();
let b = BigInt::from_str_radix("26525285981219105863630848000000", 10).unwrap();
assert_eq!(sub_sign(&a.data.data[..], &b.data.data[..]), &a - &b);
assert_eq!(sub_sign(&b.data.data[..], &a.data.data[..]), &b - &a);
}
fn test_mul_divide_torture_count(count: usize) {
use rand::{SeedableRng, StdRng, Rng};
let bits_max = 1 << 12;
let seed: &[_] = &[1, 2, 3, 4];
let mut rng: StdRng = SeedableRng::from_seed(seed);
for _ in 0..count {
/* Test with numbers of random sizes: */
let xbits = rng.gen_range(0, bits_max);
let ybits = rng.gen_range(0, bits_max);
let x = rng.gen_biguint(xbits);
let y = rng.gen_biguint(ybits);
if x.is_zero() || y.is_zero() {
continue;
}
let prod = &x * &y;
assert_eq!(&prod / &x, y);
assert_eq!(&prod / &y, x);
}
}
#[test]
fn test_mul_divide_torture() {
test_mul_divide_torture_count(1000);
}
#[test]
#[ignore]
fn test_mul_divide_torture_long() {
test_mul_divide_torture_count(1000000);
}
}
#[cfg(test)]
mod bigint_tests {
use Integer;
use super::{BigDigit, BigUint, ToBigUint};
use super::{Sign, BigInt, RandBigInt, ToBigInt, big_digit};
use super::Sign::{Minus, NoSign, Plus};
use std::cmp::Ordering::{Less, Equal, Greater};
use std::{f32, f64};
use std::{i8, i16, i32, i64, isize};
use std::iter::repeat;
use std::{u8, u16, u32, u64, usize};
use std::ops::{Neg};
use rand::thread_rng;
use {Zero, One, Signed, ToPrimitive, FromPrimitive, Num};
use Float;
/// Assert that an op works for all val/ref combinations
macro_rules! assert_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_eq!((&$left) $op (&$right), $expected);
assert_eq!((&$left) $op $right.clone(), $expected);
assert_eq!($left.clone() $op (&$right), $expected);
assert_eq!($left.clone() $op $right.clone(), $expected);
};
}
#[test]
fn test_from_biguint() {
fn check(inp_s: Sign, inp_n: usize, ans_s: Sign, ans_n: usize) {
let inp = BigInt::from_biguint(inp_s, FromPrimitive::from_usize(inp_n).unwrap());
let ans = BigInt { sign: ans_s, data: FromPrimitive::from_usize(ans_n).unwrap()};
assert_eq!(inp, ans);
}
check(Plus, 1, Plus, 1);
check(Plus, 0, NoSign, 0);
check(Minus, 1, Minus, 1);
check(NoSign, 1, NoSign, 0);
}
#[test]
fn test_from_bytes_be() {
fn check(s: &str, result: &str) {
assert_eq!(BigInt::from_bytes_be(Plus, s.as_bytes()),
BigInt::parse_bytes(result.as_bytes(), 10).unwrap());
}
check("A", "65");
check("AA", "16705");
check("AB", "16706");
check("Hello world!", "22405534230753963835153736737");
assert_eq!(BigInt::from_bytes_be(Plus, &[]), Zero::zero());
assert_eq!(BigInt::from_bytes_be(Minus, &[]), Zero::zero());
}
#[test]
fn test_to_bytes_be() {
fn check(s: &str, result: &str) {
let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap();
let (sign, v) = b.to_bytes_be();
assert_eq!((Plus, s.as_bytes()), (sign, &*v));
}
check("A", "65");
check("AA", "16705");
check("AB", "16706");
check("Hello world!", "22405534230753963835153736737");
let b: BigInt = Zero::zero();
assert_eq!(b.to_bytes_be(), (NoSign, vec![0]));
// Test with leading/trailing zero bytes and a full BigDigit of value 0
let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap();
assert_eq!(b.to_bytes_be(), (Plus, vec![1, 0, 0, 0, 0, 0, 0, 2, 0]));
}
#[test]
fn test_from_bytes_le() {
fn check(s: &str, result: &str) {
assert_eq!(BigInt::from_bytes_le(Plus, s.as_bytes()),
BigInt::parse_bytes(result.as_bytes(), 10).unwrap());
}
check("A", "65");
check("AA", "16705");
check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737");
assert_eq!(BigInt::from_bytes_le(Plus, &[]), Zero::zero());
assert_eq!(BigInt::from_bytes_le(Minus, &[]), Zero::zero());
}
#[test]
fn test_to_bytes_le() {
fn check(s: &str, result: &str) {
let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap();
let (sign, v) = b.to_bytes_le();
assert_eq!((Plus, s.as_bytes()), (sign, &*v));
}
check("A", "65");
check("AA", "16705");
check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737");
let b: BigInt = Zero::zero();
assert_eq!(b.to_bytes_le(), (NoSign, vec![0]));
// Test with leading/trailing zero bytes and a full BigDigit of value 0
let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap();
assert_eq!(b.to_bytes_le(), (Plus, vec![0, 2, 0, 0, 0, 0, 0, 0, 1]));
}
#[test]
fn test_cmp() {
let vs: [&[BigDigit]; 4] = [ &[2 as BigDigit], &[1, 1], &[2, 1], &[1, 1, 1] ];
let mut nums = Vec::new();
for s in vs.iter().rev() {
nums.push(BigInt::from_slice(Minus, *s));
}
nums.push(Zero::zero());
nums.extend(vs.iter().map(|s| BigInt::from_slice(Plus, *s)));
for (i, ni) in nums.iter().enumerate() {
for (j0, nj) in nums[i..].iter().enumerate() {
let j = i + j0;
if i == j {
assert_eq!(ni.cmp(nj), Equal);
assert_eq!(nj.cmp(ni), Equal);
assert_eq!(ni, nj);
assert!(!(ni != nj));
assert!(ni <= nj);
assert!(ni >= nj);
assert!(!(ni < nj));
assert!(!(ni > nj));
} else {
assert_eq!(ni.cmp(nj), Less);
assert_eq!(nj.cmp(ni), Greater);
assert!(!(ni == nj));
assert!(ni != nj);
assert!(ni <= nj);
assert!(!(ni >= nj));
assert!(ni < nj);
assert!(!(ni > nj));
assert!(!(nj <= ni));
assert!(nj >= ni);
assert!(!(nj < ni));
assert!(nj > ni);
}
}
}
}
#[test]
fn test_hash() {
let a = BigInt::new(NoSign, vec!());
let b = BigInt::new(NoSign, vec!(0));
let c = BigInt::new(Plus, vec!(1));
let d = BigInt::new(Plus, vec!(1,0,0,0,0,0));
let e = BigInt::new(Plus, vec!(0,0,0,0,0,1));
let f = BigInt::new(Minus, vec!(1));
assert!(::hash(&a) == ::hash(&b));
assert!(::hash(&b) != ::hash(&c));
assert!(::hash(&c) == ::hash(&d));
assert!(::hash(&d) != ::hash(&e));
assert!(::hash(&c) != ::hash(&f));
}
#[test]
fn test_convert_i64() {
fn check(b1: BigInt, i: i64) {
let b2: BigInt = FromPrimitive::from_i64(i).unwrap();
assert!(b1 == b2);
assert!(b1.to_i64().unwrap() == i);
}
check(Zero::zero(), 0);
check(One::one(), 1);
check(i64::MIN.to_bigint().unwrap(), i64::MIN);
check(i64::MAX.to_bigint().unwrap(), i64::MAX);
assert_eq!(
(i64::MAX as u64 + 1).to_bigint().unwrap().to_i64(),
None);
assert_eq!(
BigInt::from_biguint(Plus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_i64(),
None);
assert_eq!(
BigInt::from_biguint(Minus, BigUint::new(vec!(1,0,0,1<<(big_digit::BITS-1)))).to_i64(),
None);
assert_eq!(
BigInt::from_biguint(Minus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_i64(),
None);
}
#[test]
fn test_convert_u64() {
fn check(b1: BigInt, u: u64) {
let b2: BigInt = FromPrimitive::from_u64(u).unwrap();
assert!(b1 == b2);
assert!(b1.to_u64().unwrap() == u);
}
check(Zero::zero(), 0);
check(One::one(), 1);
check(u64::MIN.to_bigint().unwrap(), u64::MIN);
check(u64::MAX.to_bigint().unwrap(), u64::MAX);
assert_eq!(
BigInt::from_biguint(Plus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_u64(),
None);
let max_value: BigUint = FromPrimitive::from_u64(u64::MAX).unwrap();
assert_eq!(BigInt::from_biguint(Minus, max_value).to_u64(), None);
assert_eq!(BigInt::from_biguint(Minus, BigUint::new(vec!(1, 2, 3, 4, 5))).to_u64(), None);
}
#[test]
fn test_convert_f32() {
fn check(b1: &BigInt, f: f32) {
let b2 = BigInt::from_f32(f).unwrap();
assert_eq!(b1, &b2);
assert_eq!(b1.to_f32().unwrap(), f);
let neg_b1 = -b1;
let neg_b2 = BigInt::from_f32(-f).unwrap();
assert_eq!(neg_b1, neg_b2);
assert_eq!(neg_b1.to_f32().unwrap(), -f);
}
check(&BigInt::zero(), 0.0);
check(&BigInt::one(), 1.0);
check(&BigInt::from(u16::MAX), 2.0.powi(16) - 1.0);
check(&BigInt::from(1u64 << 32), 2.0.powi(32));
check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
check(&((BigInt::one() << 100) + (BigInt::one() << 123)), 2.0.powi(100) + 2.0.powi(123));
check(&(BigInt::one() << 127), 2.0.powi(127));
check(&(BigInt::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX);
// keeping all 24 digits with the bits at different offsets to the BigDigits
let x: u32 = 0b00000000101111011111011011011101;
let mut f = x as f32;
let mut b = BigInt::from(x);
for _ in 0..64 {
check(&b, f);
f *= 2.0;
b = b << 1;
}
// this number when rounded to f64 then f32 isn't the same as when rounded straight to f32
let mut n: i64 = 0b0000000000111111111111111111111111011111111111111111111111111111;
assert!((n as f64) as f32 != n as f32);
assert_eq!(BigInt::from(n).to_f32(), Some(n as f32));
n = -n;
assert!((n as f64) as f32 != n as f32);
assert_eq!(BigInt::from(n).to_f32(), Some(n as f32));
// test rounding up with the bits at different offsets to the BigDigits
let mut f = ((1u64 << 25) - 1) as f32;
let mut b = BigInt::from(1u64 << 25);
for _ in 0..64 {
assert_eq!(b.to_f32(), Some(f));
f *= 2.0;
b = b << 1;
}
// rounding
assert_eq!(BigInt::from_f32(-f32::consts::PI), Some(BigInt::from(-3i32)));
assert_eq!(BigInt::from_f32(-f32::consts::E), Some(BigInt::from(-2i32)));
assert_eq!(BigInt::from_f32(-0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(-0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(-0.0), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(f32::MIN_POSITIVE / 2.0), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(f32::MIN_POSITIVE), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(f32::consts::E), Some(BigInt::from(2u32)));
assert_eq!(BigInt::from_f32(f32::consts::PI), Some(BigInt::from(3u32)));
// special float values
assert_eq!(BigInt::from_f32(f32::NAN), None);
assert_eq!(BigInt::from_f32(f32::INFINITY), None);
assert_eq!(BigInt::from_f32(f32::NEG_INFINITY), None);
// largest BigInt that will round to a finite f32 value
let big_num = (BigInt::one() << 128) - BigInt::one() - (BigInt::one() << (128 - 25));
assert_eq!(big_num.to_f32(), Some(f32::MAX));
assert_eq!((&big_num + BigInt::one()).to_f32(), None);
assert_eq!((-&big_num).to_f32(), Some(f32::MIN));
assert_eq!(((-&big_num) - BigInt::one()).to_f32(), None);
assert_eq!(((BigInt::one() << 128) - BigInt::one()).to_f32(), None);
assert_eq!((BigInt::one() << 128).to_f32(), None);
assert_eq!((-((BigInt::one() << 128) - BigInt::one())).to_f32(), None);
assert_eq!((-(BigInt::one() << 128)).to_f32(), None);
}
#[test]
fn test_convert_f64() {
fn check(b1: &BigInt, f: f64) {
let b2 = BigInt::from_f64(f).unwrap();
assert_eq!(b1, &b2);
assert_eq!(b1.to_f64().unwrap(), f);
let neg_b1 = -b1;
let neg_b2 = BigInt::from_f64(-f).unwrap();
assert_eq!(neg_b1, neg_b2);
assert_eq!(neg_b1.to_f64().unwrap(), -f);
}
check(&BigInt::zero(), 0.0);
check(&BigInt::one(), 1.0);
check(&BigInt::from(u32::MAX), 2.0.powi(32) - 1.0);
check(&BigInt::from(1u64 << 32), 2.0.powi(32));
check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
check(&((BigInt::one() << 100) + (BigInt::one() << 152)), 2.0.powi(100) + 2.0.powi(152));
check(&(BigInt::one() << 1023), 2.0.powi(1023));
check(&(BigInt::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX);
// keeping all 53 digits with the bits at different offsets to the BigDigits
let x: u64 = 0b0000000000011110111110110111111101110111101111011111011011011101;
let mut f = x as f64;
let mut b = BigInt::from(x);
for _ in 0..128 {
check(&b, f);
f *= 2.0;
b = b << 1;
}
// test rounding up with the bits at different offsets to the BigDigits
let mut f = ((1u64 << 54) - 1) as f64;
let mut b = BigInt::from(1u64 << 54);
for _ in 0..128 {
assert_eq!(b.to_f64(), Some(f));
f *= 2.0;
b = b << 1;
}
// rounding
assert_eq!(BigInt::from_f64(-f64::consts::PI), Some(BigInt::from(-3i32)));
assert_eq!(BigInt::from_f64(-f64::consts::E), Some(BigInt::from(-2i32)));
assert_eq!(BigInt::from_f64(-0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(-0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(-0.0), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(f64::MIN_POSITIVE / 2.0), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(f64::MIN_POSITIVE), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(f64::consts::E), Some(BigInt::from(2u32)));
assert_eq!(BigInt::from_f64(f64::consts::PI), Some(BigInt::from(3u32)));
// special float values
assert_eq!(BigInt::from_f64(f64::NAN), None);
assert_eq!(BigInt::from_f64(f64::INFINITY), None);
assert_eq!(BigInt::from_f64(f64::NEG_INFINITY), None);
// largest BigInt that will round to a finite f64 value
let big_num = (BigInt::one() << 1024) - BigInt::one() - (BigInt::one() << (1024 - 54));
assert_eq!(big_num.to_f64(), Some(f64::MAX));
assert_eq!((&big_num + BigInt::one()).to_f64(), None);
assert_eq!((-&big_num).to_f64(), Some(f64::MIN));
assert_eq!(((-&big_num) - BigInt::one()).to_f64(), None);
assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None);
assert_eq!((BigInt::one() << 1024).to_f64(), None);
assert_eq!((-((BigInt::one() << 1024) - BigInt::one())).to_f64(), None);
assert_eq!((-(BigInt::one() << 1024)).to_f64(), None);
}
#[test]
fn test_convert_to_biguint() {
fn check(n: BigInt, ans_1: BigUint) {
assert_eq!(n.to_biguint().unwrap(), ans_1);
assert_eq!(n.to_biguint().unwrap().to_bigint().unwrap(), n);
}
let zero: BigInt = Zero::zero();
let unsigned_zero: BigUint = Zero::zero();
let positive = BigInt::from_biguint(
Plus, BigUint::new(vec!(1,2,3)));
let negative = -&positive;
check(zero, unsigned_zero);
check(positive, BigUint::new(vec!(1,2,3)));
assert_eq!(negative.to_biguint(), None);
}
#[test]
fn test_convert_from_uint() {
macro_rules! check {
($ty:ident, $max:expr) => {
assert_eq!(BigInt::from($ty::zero()), BigInt::zero());
assert_eq!(BigInt::from($ty::one()), BigInt::one());
assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one());
assert_eq!(BigInt::from($ty::MAX), $max);
}
}
check!(u8, BigInt::from_slice(Plus, &[u8::MAX as BigDigit]));
check!(u16, BigInt::from_slice(Plus, &[u16::MAX as BigDigit]));
check!(u32, BigInt::from_slice(Plus, &[u32::MAX as BigDigit]));
check!(u64, BigInt::from_slice(Plus, &[u32::MAX as BigDigit, u32::MAX as BigDigit]));
check!(usize, BigInt::from(usize::MAX as u64));
}
#[test]
fn test_convert_from_int() {
macro_rules! check {
($ty:ident, $min:expr, $max:expr) => {
assert_eq!(BigInt::from($ty::MIN), $min);
assert_eq!(BigInt::from($ty::MIN + $ty::one()), $min + BigInt::one());
assert_eq!(BigInt::from(-$ty::one()), -BigInt::one());
assert_eq!(BigInt::from($ty::zero()), BigInt::zero());
assert_eq!(BigInt::from($ty::one()), BigInt::one());
assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one());
assert_eq!(BigInt::from($ty::MAX), $max);
}
}
check!(i8, BigInt::from_slice(Minus, &[1 << 7]),
BigInt::from_slice(Plus, &[i8::MAX as BigDigit]));
check!(i16, BigInt::from_slice(Minus, &[1 << 15]),
BigInt::from_slice(Plus, &[i16::MAX as BigDigit]));
check!(i32, BigInt::from_slice(Minus, &[1 << 31]),
BigInt::from_slice(Plus, &[i32::MAX as BigDigit]));
check!(i64, BigInt::from_slice(Minus, &[0, 1 << 31]),
BigInt::from_slice(Plus, &[u32::MAX as BigDigit, i32::MAX as BigDigit]));
check!(isize, BigInt::from(isize::MIN as i64),
BigInt::from(isize::MAX as i64));
}
#[test]
fn test_convert_from_biguint() {
assert_eq!(BigInt::from(BigUint::zero()), BigInt::zero());
assert_eq!(BigInt::from(BigUint::one()), BigInt::one());
assert_eq!(BigInt::from(BigUint::from_slice(&[1, 2, 3])), BigInt::from_slice(Plus, &[1, 2, 3]));
}
const N1: BigDigit = -1i32 as BigDigit;
const N2: BigDigit = -2i32 as BigDigit;
const SUM_TRIPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[
(&[], &[], &[]),
(&[], &[ 1], &[ 1]),
(&[ 1], &[ 1], &[ 2]),
(&[ 1], &[ 1, 1], &[ 2, 1]),
(&[ 1], &[N1], &[ 0, 1]),
(&[ 1], &[N1, N1], &[ 0, 0, 1]),
(&[N1, N1], &[N1, N1], &[N2, N1, 1]),
(&[ 1, 1, 1], &[N1, N1], &[ 0, 1, 2]),
(&[ 2, 2, 1], &[N1, N2], &[ 1, 1, 2])
];
#[test]
fn test_add() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
assert_op!(a + b == c);
assert_op!(b + a == c);
assert_op!(c + na == b);
assert_op!(c + nb == a);
assert_op!(a + nc == nb);
assert_op!(b + nc == na);
assert_op!(na + nb == nc);
assert_op!(a + na == Zero::zero());
}
}
#[test]
fn test_sub() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
assert_op!(c - a == b);
assert_op!(c - b == a);
assert_op!(nb - a == nc);
assert_op!(na - b == nc);
assert_op!(b - na == c);
assert_op!(a - nb == c);
assert_op!(nc - na == nb);
assert_op!(a - a == Zero::zero());
}
}
const M: u32 = ::std::u32::MAX;
static MUL_TRIPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[
(&[], &[], &[]),
(&[], &[ 1], &[]),
(&[ 2], &[], &[]),
(&[ 1], &[ 1], &[1]),
(&[ 2], &[ 3], &[ 6]),
(&[ 1], &[ 1, 1, 1], &[1, 1, 1]),
(&[ 1, 2, 3], &[ 3], &[ 3, 6, 9]),
(&[ 1, 1, 1], &[N1], &[N1, N1, N1]),
(&[ 1, 2, 3], &[N1], &[N1, N2, N2, 2]),
(&[ 1, 2, 3, 4], &[N1], &[N1, N2, N2, N2, 3]),
(&[N1], &[N1], &[ 1, N2]),
(&[N1, N1], &[N1], &[ 1, N1, N2]),
(&[N1, N1, N1], &[N1], &[ 1, N1, N1, N2]),
(&[N1, N1, N1, N1], &[N1], &[ 1, N1, N1, N1, N2]),
(&[ M/2 + 1], &[ 2], &[ 0, 1]),
(&[0, M/2 + 1], &[ 2], &[ 0, 0, 1]),
(&[ 1, 2], &[ 1, 2, 3], &[1, 4, 7, 6]),
(&[N1, N1], &[N1, N1, N1], &[1, 0, N1, N2, N1]),
(&[N1, N1, N1], &[N1, N1, N1, N1], &[1, 0, 0, N1, N2, N1, N1]),
(&[ 0, 0, 1], &[ 1, 2, 3], &[0, 0, 1, 2, 3]),
(&[ 0, 0, 1], &[ 0, 0, 0, 1], &[0, 0, 0, 0, 0, 1])
];
static DIV_REM_QUADRUPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])]
= &[
(&[ 1], &[ 2], &[], &[1]),
(&[ 1, 1], &[ 2], &[ M/2+1], &[1]),
(&[ 1, 1, 1], &[ 2], &[ M/2+1, M/2+1], &[1]),
(&[ 0, 1], &[N1], &[1], &[1]),
(&[N1, N1], &[N2], &[2, 1], &[3])
];
#[test]
fn test_mul() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
assert_op!(a * b == c);
assert_op!(b * a == c);
assert_op!(na * nb == c);
assert_op!(na * b == nc);
assert_op!(nb * a == nc);
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
assert!(a == &b * &c + &d);
assert!(a == &c * &b + &d);
}
}
#[test]
fn test_div_mod_floor() {
fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) {
let (d, m) = a.div_mod_floor(b);
if !m.is_zero() {
assert_eq!(m.sign, b.sign);
}
assert!(m.abs() <= b.abs());
assert!(*a == b * &d + &m);
assert!(d == *ans_d);
assert!(m == *ans_m);
}
fn check(a: &BigInt, b: &BigInt, d: &BigInt, m: &BigInt) {
if m.is_zero() {
check_sub(a, b, d, m);
check_sub(a, &b.neg(), &d.neg(), m);
check_sub(&a.neg(), b, &d.neg(), m);
check_sub(&a.neg(), &b.neg(), d, m);
} else {
let one: BigInt = One::one();
check_sub(a, b, d, m);
check_sub(a, &b.neg(), &(d.neg() - &one), &(m - b));
check_sub(&a.neg(), b, &(d.neg() - &one), &(b - m));
check_sub(&a.neg(), &b.neg(), d, &m.neg());
}
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if !a.is_zero() { check(&c, &a, &b, &Zero::zero()); }
if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); }
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
if !b.is_zero() {
check(&a, &b, &c, &d);
}
}
}
#[test]
fn test_div_rem() {
fn check_sub(a: &BigInt, b: &BigInt, ans_q: &BigInt, ans_r: &BigInt) {
let (q, r) = a.div_rem(b);
if !r.is_zero() {
assert_eq!(r.sign, a.sign);
}
assert!(r.abs() <= b.abs());
assert!(*a == b * &q + &r);
assert!(q == *ans_q);
assert!(r == *ans_r);
let (a, b, ans_q, ans_r) = (a.clone(), b.clone(), ans_q.clone(), ans_r.clone());
assert_op!(a / b == ans_q);
assert_op!(a % b == ans_r);
}
fn check(a: &BigInt, b: &BigInt, q: &BigInt, r: &BigInt) {
check_sub(a, b, q, r);
check_sub(a, &b.neg(), &q.neg(), r);
check_sub(&a.neg(), b, &q.neg(), &r.neg());
check_sub(&a.neg(), &b.neg(), q, &r.neg());
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if !a.is_zero() { check(&c, &a, &b, &Zero::zero()); }
if !b.is_zero() { check(&c, &b, &a, &Zero::zero()); }
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
if !b.is_zero() {
check(&a, &b, &c, &d);
}
}
}
#[test]
fn test_checked_add() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
assert!(a.checked_add(&b).unwrap() == c);
assert!(b.checked_add(&a).unwrap() == c);
assert!(c.checked_add(&(-&a)).unwrap() == b);
assert!(c.checked_add(&(-&b)).unwrap() == a);
assert!(a.checked_add(&(-&c)).unwrap() == (-&b));
assert!(b.checked_add(&(-&c)).unwrap() == (-&a));
assert!((-&a).checked_add(&(-&b)).unwrap() == (-&c));
assert!(a.checked_add(&(-&a)).unwrap() == Zero::zero());
}
}
#[test]
fn test_checked_sub() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
assert!(c.checked_sub(&a).unwrap() == b);
assert!(c.checked_sub(&b).unwrap() == a);
assert!((-&b).checked_sub(&a).unwrap() == (-&c));
assert!((-&a).checked_sub(&b).unwrap() == (-&c));
assert!(b.checked_sub(&(-&a)).unwrap() == c);
assert!(a.checked_sub(&(-&b)).unwrap() == c);
assert!((-&c).checked_sub(&(-&a)).unwrap() == (-&b));
assert!(a.checked_sub(&a).unwrap() == Zero::zero());
}
}
#[test]
fn test_checked_mul() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
assert!(a.checked_mul(&b).unwrap() == c);
assert!(b.checked_mul(&a).unwrap() == c);
assert!((-&a).checked_mul(&b).unwrap() == -&c);
assert!((-&b).checked_mul(&a).unwrap() == -&c);
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
assert!(a == b.checked_mul(&c).unwrap() + &d);
assert!(a == c.checked_mul(&b).unwrap() + &d);
}
}
#[test]
fn test_checked_div() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if !a.is_zero() {
assert!(c.checked_div(&a).unwrap() == b);
assert!((-&c).checked_div(&(-&a)).unwrap() == b);
assert!((-&c).checked_div(&a).unwrap() == -&b);
}
if !b.is_zero() {
assert!(c.checked_div(&b).unwrap() == a);
assert!((-&c).checked_div(&(-&b)).unwrap() == a);
assert!((-&c).checked_div(&b).unwrap() == -&a);
}
assert!(c.checked_div(&Zero::zero()).is_none());
assert!((-&c).checked_div(&Zero::zero()).is_none());
}
}
#[test]
fn test_gcd() {
fn check(a: isize, b: isize, c: isize) {
let big_a: BigInt = FromPrimitive::from_isize(a).unwrap();
let big_b: BigInt = FromPrimitive::from_isize(b).unwrap();
let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
assert_eq!(big_a.gcd(&big_b), big_c);
}
check(10, 2, 2);
check(10, 3, 1);
check(0, 3, 3);
check(3, 3, 3);
check(56, 42, 14);
check(3, -3, 3);
check(-6, 3, 3);
check(-4, -2, 2);
}
#[test]
fn test_lcm() {
fn check(a: isize, b: isize, c: isize) {
let big_a: BigInt = FromPrimitive::from_isize(a).unwrap();
let big_b: BigInt = FromPrimitive::from_isize(b).unwrap();
let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
assert_eq!(big_a.lcm(&big_b), big_c);
}
check(1, 0, 0);
check(0, 1, 0);
check(1, 1, 1);
check(-1, 1, 1);
check(1, -1, 1);
check(-1, -1, 1);
check(8, 9, 72);
check(11, 5, 55);
}
#[test]
fn test_abs_sub() {
let zero: BigInt = Zero::zero();
let one: BigInt = One::one();
assert_eq!((-&one).abs_sub(&one), zero);
let one: BigInt = One::one();
let zero: BigInt = Zero::zero();
assert_eq!(one.abs_sub(&one), zero);
let one: BigInt = One::one();
let zero: BigInt = Zero::zero();
assert_eq!(one.abs_sub(&zero), one);
let one: BigInt = One::one();
let two: BigInt = FromPrimitive::from_isize(2).unwrap();
assert_eq!(one.abs_sub(&-&one), two);
}
#[test]
fn test_from_str_radix() {
fn check(s: &str, ans: Option<isize>) {
let ans = ans.map(|n| {
let x: BigInt = FromPrimitive::from_isize(n).unwrap();
x
});
assert_eq!(BigInt::from_str_radix(s, 10).ok(), ans);
}
check("10", Some(10));
check("1", Some(1));
check("0", Some(0));
check("-1", Some(-1));
check("-10", Some(-10));
check("+10", Some(10));
check("--7", None);
check("++5", None);
check("+-9", None);
check("-+3", None);
check("Z", None);
check("_", None);
// issue 10522, this hit an edge case that caused it to
// attempt to allocate a vector of size (-1u) == huge.
let x: BigInt =
format!("1{}", repeat("0").take(36).collect::<String>()).parse().unwrap();
let _y = x.to_string();
}
#[test]
fn test_lower_hex() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:x}", a), "a");
assert_eq!(format!("{:x}", hello), "-48656c6c6f20776f726c6421");
assert_eq!(format!("{:♥>+#8x}", a), "♥♥♥♥+0xa");
}
#[test]
fn test_upper_hex() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:X}", a), "A");
assert_eq!(format!("{:X}", hello), "-48656C6C6F20776F726C6421");
assert_eq!(format!("{:♥>+#8X}", a), "♥♥♥♥+0xA");
}
#[test]
fn test_binary() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-224055342307539".as_bytes(), 10).unwrap();
assert_eq!(format!("{:b}", a), "1010");
assert_eq!(format!("{:b}", hello), "-110010111100011011110011000101101001100011010011");
assert_eq!(format!("{:♥>+#8b}", a), "♥+0b1010");
}
#[test]
fn test_octal() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:o}", a), "12");
assert_eq!(format!("{:o}", hello), "-22062554330674403566756233062041");
assert_eq!(format!("{:♥>+#8o}", a), "♥♥♥+0o12");
}
#[test]
fn test_display() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{}", a), "10");
assert_eq!(format!("{}", hello), "-22405534230753963835153736737");
assert_eq!(format!("{:♥>+#8}", a), "♥♥♥♥♥+10");
}
#[test]
fn test_neg() {
assert!(-BigInt::new(Plus, vec!(1, 1, 1)) ==
BigInt::new(Minus, vec!(1, 1, 1)));
assert!(-BigInt::new(Minus, vec!(1, 1, 1)) ==
BigInt::new(Plus, vec!(1, 1, 1)));
let zero: BigInt = Zero::zero();
assert_eq!(-&zero, zero);
}
#[test]
fn test_rand() {
let mut rng = thread_rng();
let _n: BigInt = rng.gen_bigint(137);
assert!(rng.gen_bigint(0).is_zero());
}
#[test]
fn test_rand_range() {
let mut rng = thread_rng();
for _ in 0..10 {
assert_eq!(rng.gen_bigint_range(&FromPrimitive::from_usize(236).unwrap(),
&FromPrimitive::from_usize(237).unwrap()),
FromPrimitive::from_usize(236).unwrap());
}
fn check(l: BigInt, u: BigInt) {
let mut rng = thread_rng();
for _ in 0..1000 {
let n: BigInt = rng.gen_bigint_range(&l, &u);
assert!(n >= l);
assert!(n < u);
}
}
let l: BigInt = FromPrimitive::from_usize(403469000 + 2352).unwrap();
let u: BigInt = FromPrimitive::from_usize(403469000 + 3513).unwrap();
check( l.clone(), u.clone());
check(-l.clone(), u.clone());
check(-u.clone(), -l.clone());
}
#[test]
#[should_panic]
fn test_zero_rand_range() {
thread_rng().gen_bigint_range(&FromPrimitive::from_isize(54).unwrap(),
&FromPrimitive::from_isize(54).unwrap());
}
#[test]
#[should_panic]
fn test_negative_rand_range() {
let mut rng = thread_rng();
let l = FromPrimitive::from_usize(2352).unwrap();
let u = FromPrimitive::from_usize(3513).unwrap();
// Switching u and l should fail:
let _n: BigInt = rng.gen_bigint_range(&u, &l);
}
}