num-traits/src/complex.rs

444 lines
12 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Complex numbers.
use std::fmt;
use std::num::FloatMath;
use std::iter::{AdditiveIterator, MultiplicativeIterator};
use {Zero, One, Num};
// FIXME #1284: handle complex NaN & infinity etc. This
// probably doesn't map to C's _Complex correctly.
/// A complex number in Cartesian form.
#[deriving(PartialEq, Copy, Clone, Hash, Encodable, Decodable)]
pub struct Complex<T> {
/// Real portion of the complex number
pub re: T,
/// Imaginary portion of the complex number
pub im: T
}
pub type Complex32 = Complex<f32>;
pub type Complex64 = Complex<f64>;
impl<T: Clone + Num> Complex<T> {
/// Create a new Complex
#[inline]
pub fn new(re: T, im: T) -> Complex<T> {
Complex { re: re, im: im }
}
/// Returns the square of the norm (since `T` doesn't necessarily
/// have a sqrt function), i.e. `re^2 + im^2`.
#[inline]
pub fn norm_sqr(&self) -> T {
self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
}
/// Returns the complex conjugate. i.e. `re - i im`
#[inline]
pub fn conj(&self) -> Complex<T> {
Complex::new(self.re.clone(), -self.im.clone())
}
/// Multiplies `self` by the scalar `t`.
#[inline]
pub fn scale(&self, t: T) -> Complex<T> {
Complex::new(self.re.clone() * t.clone(), self.im.clone() * t)
}
/// Divides `self` by the scalar `t`.
#[inline]
pub fn unscale(&self, t: T) -> Complex<T> {
Complex::new(self.re.clone() / t.clone(), self.im.clone() / t)
}
/// Returns `1/self`
#[inline]
pub fn inv(&self) -> Complex<T> {
let norm_sqr = self.norm_sqr();
Complex::new(self.re.clone() / norm_sqr.clone(),
-self.im.clone() / norm_sqr)
}
}
impl<T: Clone + FloatMath> Complex<T> {
/// Calculate |self|
#[inline]
pub fn norm(&self) -> T {
self.re.clone().hypot(self.im.clone())
}
}
impl<T: Clone + FloatMath + Num> Complex<T> {
/// Calculate the principal Arg of self.
#[inline]
pub fn arg(&self) -> T {
self.im.clone().atan2(self.re.clone())
}
/// Convert to polar form (r, theta), such that `self = r * exp(i
/// * theta)`
#[inline]
pub fn to_polar(&self) -> (T, T) {
(self.norm(), self.arg())
}
/// Convert a polar representation into a complex number.
#[inline]
pub fn from_polar(r: &T, theta: &T) -> Complex<T> {
Complex::new(*r * theta.cos(), *r * theta.sin())
}
}
macro_rules! forward_val_val_binop {
(impl $imp:ident, $method:ident) => {
impl<T: Clone + Num> $imp<Complex<T>, Complex<T>> for Complex<T> {
#[inline]
fn $method(self, other: Complex<T>) -> Complex<T> {
(&self).$method(&other)
}
}
}
}
macro_rules! forward_ref_val_binop {
(impl $imp:ident, $method:ident) => {
impl<'a, T: Clone + Num> $imp<Complex<T>, Complex<T>> for &'a Complex<T> {
#[inline]
fn $method(self, other: Complex<T>) -> Complex<T> {
self.$method(&other)
}
}
}
}
macro_rules! forward_val_ref_binop {
(impl $imp:ident, $method:ident) => {
impl<'a, T: Clone + Num> $imp<&'a Complex<T>, Complex<T>> for Complex<T> {
#[inline]
fn $method(self, other: &Complex<T>) -> Complex<T> {
(&self).$method(other)
}
}
}
}
macro_rules! forward_all_binop {
(impl $imp:ident, $method:ident) => {
forward_val_val_binop!(impl $imp, $method);
forward_ref_val_binop!(impl $imp, $method);
forward_val_ref_binop!(impl $imp, $method);
};
}
/* arithmetic */
forward_all_binop!(impl Add, add);
// (a + i b) + (c + i d) == (a + c) + i (b + d)
impl<'a, 'b, T: Clone + Num> Add<&'b Complex<T>, Complex<T>> for &'a Complex<T> {
#[inline]
fn add(self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re.clone() + other.re.clone(),
self.im.clone() + other.im.clone())
}
}
forward_all_binop!(impl Sub, sub);
// (a + i b) - (c + i d) == (a - c) + i (b - d)
impl<'a, 'b, T: Clone + Num> Sub<&'b Complex<T>, Complex<T>> for &'a Complex<T> {
#[inline]
fn sub(self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re.clone() - other.re.clone(),
self.im.clone() - other.im.clone())
}
}
forward_all_binop!(impl Mul, mul);
// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
impl<'a, 'b, T: Clone + Num> Mul<&'b Complex<T>, Complex<T>> for &'a Complex<T> {
#[inline]
fn mul(self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(),
self.re.clone() * other.im.clone() + self.im.clone() * other.re.clone())
}
}
forward_all_binop!(impl Div, div);
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
impl<'a, 'b, T: Clone + Num> Div<&'b Complex<T>, Complex<T>> for &'a Complex<T> {
#[inline]
fn div(self, other: &Complex<T>) -> Complex<T> {
let norm_sqr = other.norm_sqr();
Complex::new((self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone()) / norm_sqr.clone(),
(self.im.clone() * other.re.clone() - self.re.clone() * other.im.clone()) / norm_sqr)
}
}
impl<T: Clone + Num> Neg<Complex<T>> for Complex<T> {
#[inline]
fn neg(self) -> Complex<T> { -&self }
}
impl<'a, T: Clone + Num> Neg<Complex<T>> for &'a Complex<T> {
#[inline]
fn neg(self) -> Complex<T> {
Complex::new(-self.re.clone(), -self.im.clone())
}
}
/* constants */
impl<T: Clone + Num> Zero for Complex<T> {
#[inline]
fn zero() -> Complex<T> {
Complex::new(Zero::zero(), Zero::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.re.is_zero() && self.im.is_zero()
}
}
impl<T: Clone + Num> One for Complex<T> {
#[inline]
fn one() -> Complex<T> {
Complex::new(One::one(), Zero::zero())
}
}
/* string conversions */
impl<T: fmt::Show + Num + PartialOrd + Clone> fmt::Show for Complex<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.im < Zero::zero() {
write!(f, "{}-{}i", self.re, -self.im.clone())
} else {
write!(f, "{}+{}i", self.re, self.im)
}
}
}
impl<A: Clone + Num, T: Iterator<Complex<A>>> AdditiveIterator<Complex<A>> for T {
fn sum(self) -> Complex<A> {
let init: Complex<A> = Zero::zero();
self.fold(init, |acc, x| acc + x)
}
}
impl<A: Clone + Num, T: Iterator<Complex<A>>> MultiplicativeIterator<Complex<A>> for T {
fn product(self) -> Complex<A> {
let init: Complex<A> = One::one();
self.fold(init, |acc, x| acc * x)
}
}
#[cfg(test)]
mod test {
#![allow(non_upper_case_globals)]
use super::{Complex64, Complex};
use std::f64;
use std::num::Float;
use std::hash::hash;
use {Zero, One};
pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
pub const _1_1i : Complex64 = Complex { re: 1.0, im: 1.0 };
pub const _0_1i : Complex64 = Complex { re: 0.0, im: 1.0 };
pub const _neg1_1i : Complex64 = Complex { re: -1.0, im: 1.0 };
pub const _05_05i : Complex64 = Complex { re: 0.5, im: 0.5 };
pub const all_consts : [Complex64, .. 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
#[test]
fn test_consts() {
// check our constants are what Complex::new creates
fn test(c : Complex64, r : f64, i: f64) {
assert_eq!(c, Complex::new(r,i));
}
test(_0_0i, 0.0, 0.0);
test(_1_0i, 1.0, 0.0);
test(_1_1i, 1.0, 1.0);
test(_neg1_1i, -1.0, 1.0);
test(_05_05i, 0.5, 0.5);
assert_eq!(_0_0i, Zero::zero());
assert_eq!(_1_0i, One::one());
}
#[test]
#[cfg_attr(target_arch = "x86", ignore)]
// FIXME #7158: (maybe?) currently failing on x86.
fn test_norm() {
fn test(c: Complex64, ns: f64) {
assert_eq!(c.norm_sqr(), ns);
assert_eq!(c.norm(), ns.sqrt())
}
test(_0_0i, 0.0);
test(_1_0i, 1.0);
test(_1_1i, 2.0);
test(_neg1_1i, 2.0);
test(_05_05i, 0.5);
}
#[test]
fn test_scale_unscale() {
assert_eq!(_05_05i.scale(2.0), _1_1i);
assert_eq!(_1_1i.unscale(2.0), _05_05i);
for &c in all_consts.iter() {
assert_eq!(c.scale(2.0).unscale(2.0), c);
}
}
#[test]
fn test_conj() {
for &c in all_consts.iter() {
assert_eq!(c.conj(), Complex::new(c.re, -c.im));
assert_eq!(c.conj().conj(), c);
}
}
#[test]
fn test_inv() {
assert_eq!(_1_1i.inv(), _05_05i.conj());
assert_eq!(_1_0i.inv(), _1_0i.inv());
}
#[test]
#[should_fail]
fn test_divide_by_zero_natural() {
let n = Complex::new(2i, 3i);
let d = Complex::new(0, 0);
let _x = n / d;
}
#[test]
#[should_fail]
#[ignore]
fn test_inv_zero() {
// FIXME #5736: should this really fail, or just NaN?
_0_0i.inv();
}
#[test]
fn test_arg() {
fn test(c: Complex64, arg: f64) {
assert!((c.arg() - arg).abs() < 1.0e-6)
}
test(_1_0i, 0.0);
test(_1_1i, 0.25 * f64::consts::PI);
test(_neg1_1i, 0.75 * f64::consts::PI);
test(_05_05i, 0.25 * f64::consts::PI);
}
#[test]
fn test_polar_conv() {
fn test(c: Complex64) {
let (r, theta) = c.to_polar();
assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6);
}
for &c in all_consts.iter() { test(c); }
}
mod arith {
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts};
use Zero;
#[test]
fn test_add() {
assert_eq!(_05_05i + _05_05i, _1_1i);
assert_eq!(_0_1i + _1_0i, _1_1i);
assert_eq!(_1_0i + _neg1_1i, _0_1i);
for &c in all_consts.iter() {
assert_eq!(_0_0i + c, c);
assert_eq!(c + _0_0i, c);
}
}
#[test]
fn test_sub() {
assert_eq!(_05_05i - _05_05i, _0_0i);
assert_eq!(_0_1i - _1_0i, _neg1_1i);
assert_eq!(_0_1i - _neg1_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c - _0_0i, c);
assert_eq!(c - c, _0_0i);
}
}
#[test]
fn test_mul() {
assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2.0));
assert_eq!(_1_1i * _0_1i, _neg1_1i);
// i^2 & i^4
assert_eq!(_0_1i * _0_1i, -_1_0i);
assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c * _1_0i, c);
assert_eq!(_1_0i * c, c);
}
}
#[test]
fn test_div() {
assert_eq!(_neg1_1i / _0_1i, _1_1i);
for &c in all_consts.iter() {
if c != Zero::zero() {
assert_eq!(c / c, _1_0i);
}
}
}
#[test]
fn test_neg() {
assert_eq!(-_1_0i + _0_1i, _neg1_1i);
assert_eq!((-_0_1i) * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(-(-c), c);
}
}
}
#[test]
fn test_to_string() {
fn test(c : Complex64, s: String) {
assert_eq!(c.to_string(), s);
}
test(_0_0i, "0+0i".to_string());
test(_1_0i, "1+0i".to_string());
test(_0_1i, "0+1i".to_string());
test(_1_1i, "1+1i".to_string());
test(_neg1_1i, "-1+1i".to_string());
test(-_neg1_1i, "1-1i".to_string());
test(_05_05i, "0.5+0.5i".to_string());
}
#[test]
fn test_hash() {
let a = Complex::new(0i32, 0i32);
let b = Complex::new(1i32, 0i32);
let c = Complex::new(0i32, 1i32);
assert!(hash(&a) != hash(&b));
assert!(hash(&b) != hash(&c));
assert!(hash(&c) != hash(&a));
}
}