Attempt number 10

This commit is contained in:
Sergey Pepyakin 2019-04-01 20:49:49 +02:00
parent 7868e77f8e
commit 58e4722a39
1 changed files with 815 additions and 0 deletions

View File

@ -1153,6 +1153,821 @@ impl FunctionReader {
}
}
mod compiler {
use super::*;
struct CompilerFrame {
// TODO: Split this type into one that is specific to compilation.
frame_type: BlockFrameType,
// TODO: Arity should be enough.
block_type: BlockType,
value_stack_len: u32,
polymorphic_stack: bool,
}
struct Compiler {
sink: Sink,
frames: Vec<CompilerFrame>,
value_stack_height: u32,
}
// Requires labels. Labels are typed.
// relative_local_depth requires the size of a value stack.
// make polymorphic requires to track unreachableness.
impl Compiler {
fn feed_instruction(
&mut self,
instruction: &Instruction,
context: &FunctionValidationContext,
) -> Result<Outcome, Error> {
use self::Instruction::*;
match *instruction {
// Nop instruction doesn't do anything. It is safe to just skip it.
Nop => {}
Unreachable => {
self.sink.emit(isa::InstructionInternal::Unreachable);
self.frames.last_mut().unwrap().polymorphic_stack = true;
}
Block(block_type) => {
let end_label = self.sink.new_label();
self.frames.push(CompilerFrame {
frame_type: BlockFrameType::Block { end_label },
block_type,
value_stack_len: self.value_stack_height,
});
}
Loop(block_type) => {
// Resolve loop header right away.
let header = self.sink.new_label();
self.sink.resolve_label(header);
self.frames.push(CompilerFrame {
frame_type: BlockFrameType::Loop { header },
block_type,
value_stack_len: self.value_stack_height,
});
}
If(block_type) => {
// `if_not` will be resolved whenever `End` or `Else` operator will be met.
// `end_label` will always be resolved at `End`.
let if_not = self.sink.new_label();
let end_label = self.sink.new_label();
// TODO: That probably means that we need to drop this value when jumping.
// pop_value(
// &mut context.value_stack,
// &context.frame_stack,
// ValueType::I32.into(),
// )?;
self.frames.push(CompilerFrame {
frame_type: BlockFrameType::IfTrue { if_not, end_label },
block_type,
value_stack_len: self.value_stack_height,
});
self.sink.emit_br_eqz(Target {
label: if_not,
drop_keep: isa::DropKeep {
drop: 0,
keep: isa::Keep::None,
},
});
}
Else => {
let (block_type, if_not, end_label) = {
let top_frame = self.frames.last().expect("empty frames stack");
let (if_not, end_label) = match top_frame.frame_type {
BlockFrameType::IfTrue { if_not, end_label } => (if_not, end_label),
_ => {
// This should not be possible since we run this code after validation.
unreachable!("Misplaced else instruction")
}
};
(top_frame.block_type, if_not, end_label)
};
// First, we need to finish if-true block: add a jump from the end of the if-true block
// to the "end_label" (it will be resolved at End).
self.sink.emit_br(Target {
label: end_label,
drop_keep: isa::DropKeep {
drop: 0,
keep: isa::Keep::None,
},
});
// Resolve `if_not` to here so when if condition is unsatisfied control flow
// will jump to this label.
self.sink.resolve_label(if_not);
self.frames.pop();
self.frames.push(CompilerFrame {
frame_type: BlockFrameType::IfFalse { end_label },
block_type,
value_stack_len: self.value_stack_height,
});
}
End => {
let (frame_type, block_type) = {
let top = self.frames.last().expect("empty frames stack");
(top.frame_type, top.block_type)
};
if let BlockFrameType::IfTrue { if_not, .. } = frame_type {
// A `if` without an `else` can't return a result.
if block_type != BlockType::NoResult {
return Err(Error(format!(
"If block without else required to have NoResult block type. But it has {:?} type",
block_type
)));
}
// Resolve `if_not` label. If the `if's` condition doesn't hold the control will jump
// to here.
self.sink.resolve_label(if_not);
}
// Unless it's a loop, resolve the `end_label` position here.
if !frame_type.is_loop() {
let end_label = frame_type.end_label();
self.sink.resolve_label(end_label);
}
if context.frame_stack.len() == 1 {
// We are about to close the last frame. Insert
// an explicit return.
// Emit the return instruction.
let drop_keep = drop_keep_return(
&context.locals,
&context.value_stack,
&context.frame_stack,
);
self.sink.emit(isa::InstructionInternal::Return(drop_keep));
}
// pop_label(&mut context.value_stack, &mut context.frame_stack)?;
// Push the result value.
if let BlockType::Value(value_type) = block_type {
// push_value(&mut context.value_stack, value_type.into())?;
}
}
Br(depth) => {
let target = require_target(depth, self.value_stack_height, &context.frame_stack);
self.sink.emit_br(target);
self.polymorphic_stack =
return Ok(Outcome::Unreachable);
}
BrIf(depth) => {
let target = require_target(depth, self.value_stack_height, &context.frame_stack);
self.sink.emit_br_nez(target);
}
BrTable(ref table, default) => {
let mut targets = Vec::new();
for depth in table.iter() {
let target =
require_target(*depth, self.value_stack_height, &context.frame_stack);
targets.push(target);
}
let default_target =
require_target(default, self.value_stack_height, &context.frame_stack);
self.sink.emit_br_table(&targets, default_target);
return Ok(Outcome::Unreachable);
}
Return => {
let drop_keep = drop_keep_return(
&context.locals,
&context.value_stack,
&context.frame_stack,
);
self.sink.emit(isa::InstructionInternal::Return(drop_keep));
return Ok(Outcome::Unreachable);
}
Call(index) => {
self.sink.emit(isa::InstructionInternal::Call(index));
}
CallIndirect(index, _reserved) => {
self.sink
.emit(isa::InstructionInternal::CallIndirect(index));
}
Drop => {
self.sink.emit(isa::InstructionInternal::Drop);
}
Select => {
self.sink.emit(isa::InstructionInternal::Select);
}
GetLocal(index) => {
// We need to calculate relative depth before validation since
// it will change the value stack size.
let depth = relative_local_depth(index, &context.locals, self.value_stack_height)?;
// TODO: we will need to add a special mode for relative_local_depth for
// adding +-1
// Validator::validate_get_local(context, index)?;
self.sink.emit(isa::InstructionInternal::GetLocal(depth));
}
SetLocal(index) => {
let depth = relative_local_depth(index, &context.locals, self.value_stack_height)?;
self.sink.emit(isa::InstructionInternal::SetLocal(depth));
}
TeeLocal(index) => {
let depth = relative_local_depth(index, &context.locals, self.value_stack_height)?;
self.sink.emit(isa::InstructionInternal::TeeLocal(depth));
}
GetGlobal(index) => {
self.sink.emit(isa::InstructionInternal::GetGlobal(index));
}
SetGlobal(index) => {
self.sink.emit(isa::InstructionInternal::SetGlobal(index));
}
I32Load(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Load(offset));
}
I64Load(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Load(offset));
}
F32Load(align, offset) => {
self.sink.emit(isa::InstructionInternal::F32Load(offset));
}
F64Load(align, offset) => {
self.sink.emit(isa::InstructionInternal::F64Load(offset));
}
I32Load8S(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Load8S(offset));
}
I32Load8U(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Load8U(offset));
}
I32Load16S(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Load16S(offset));
}
I32Load16U(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Load16U(offset));
}
I64Load8S(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Load8S(offset));
}
I64Load8U(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Load8U(offset));
}
I64Load16S(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Load16S(offset));
}
I64Load16U(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Load16U(offset));
}
I64Load32S(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Load32S(offset));
}
I64Load32U(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Load32U(offset));
}
I32Store(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Store(offset));
}
I64Store(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Store(offset));
}
F32Store(align, offset) => {
self.sink.emit(isa::InstructionInternal::F32Store(offset));
}
F64Store(align, offset) => {
self.sink.emit(isa::InstructionInternal::F64Store(offset));
}
I32Store8(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Store8(offset));
}
I32Store16(align, offset) => {
self.sink.emit(isa::InstructionInternal::I32Store16(offset));
}
I64Store8(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Store8(offset));
}
I64Store16(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Store16(offset));
}
I64Store32(align, offset) => {
self.sink.emit(isa::InstructionInternal::I64Store32(offset));
}
CurrentMemory(_) => {
self.sink.emit(isa::InstructionInternal::CurrentMemory);
}
GrowMemory(_) => {
self.sink.emit(isa::InstructionInternal::GrowMemory);
}
I32Const(v) => {
self.sink.emit(isa::InstructionInternal::I32Const(v));
}
I64Const(v) => {
self.sink.emit(isa::InstructionInternal::I64Const(v));
}
F32Const(v) => {
self.sink.emit(isa::InstructionInternal::F32Const(v));
}
F64Const(v) => {
self.sink.emit(isa::InstructionInternal::F64Const(v));
}
I32Eqz => {
self.sink.emit(isa::InstructionInternal::I32Eqz);
}
I32Eq => {
self.sink.emit(isa::InstructionInternal::I32Eq);
}
I32Ne => {
self.sink.emit(isa::InstructionInternal::I32Ne);
}
I32LtS => {
self.sink.emit(isa::InstructionInternal::I32LtS);
}
I32LtU => {
self.sink.emit(isa::InstructionInternal::I32LtU);
}
I32GtS => {
self.sink.emit(isa::InstructionInternal::I32GtS);
}
I32GtU => {
self.sink.emit(isa::InstructionInternal::I32GtU);
}
I32LeS => {
self.sink.emit(isa::InstructionInternal::I32LeS);
}
I32LeU => {
self.sink.emit(isa::InstructionInternal::I32LeU);
}
I32GeS => {
self.sink.emit(isa::InstructionInternal::I32GeS);
}
I32GeU => {
self.sink.emit(isa::InstructionInternal::I32GeU);
}
I64Eqz => {
self.sink.emit(isa::InstructionInternal::I64Eqz);
}
I64Eq => {
self.sink.emit(isa::InstructionInternal::I64Eq);
}
I64Ne => {
self.sink.emit(isa::InstructionInternal::I64Ne);
}
I64LtS => {
self.sink.emit(isa::InstructionInternal::I64LtS);
}
I64LtU => {
self.sink.emit(isa::InstructionInternal::I64LtU);
}
I64GtS => {
self.sink.emit(isa::InstructionInternal::I64GtS);
}
I64GtU => {
self.sink.emit(isa::InstructionInternal::I64GtU);
}
I64LeS => {
self.sink.emit(isa::InstructionInternal::I64LeS);
}
I64LeU => {
self.sink.emit(isa::InstructionInternal::I64LeU);
}
I64GeS => {
self.sink.emit(isa::InstructionInternal::I64GeS);
}
I64GeU => {
self.sink.emit(isa::InstructionInternal::I64GeU);
}
F32Eq => {
self.sink.emit(isa::InstructionInternal::F32Eq);
}
F32Ne => {
self.sink.emit(isa::InstructionInternal::F32Ne);
}
F32Lt => {
self.sink.emit(isa::InstructionInternal::F32Lt);
}
F32Gt => {
self.sink.emit(isa::InstructionInternal::F32Gt);
}
F32Le => {
self.sink.emit(isa::InstructionInternal::F32Le);
}
F32Ge => {
self.sink.emit(isa::InstructionInternal::F32Ge);
}
F64Eq => {
self.sink.emit(isa::InstructionInternal::F64Eq);
}
F64Ne => {
self.sink.emit(isa::InstructionInternal::F64Ne);
}
F64Lt => {
self.sink.emit(isa::InstructionInternal::F64Lt);
}
F64Gt => {
self.sink.emit(isa::InstructionInternal::F64Gt);
}
F64Le => {
self.sink.emit(isa::InstructionInternal::F64Le);
}
F64Ge => {
self.sink.emit(isa::InstructionInternal::F64Ge);
}
I32Clz => {
self.sink.emit(isa::InstructionInternal::I32Clz);
}
I32Ctz => {
self.sink.emit(isa::InstructionInternal::I32Ctz);
}
I32Popcnt => {
self.sink.emit(isa::InstructionInternal::I32Popcnt);
}
I32Add => {
self.sink.emit(isa::InstructionInternal::I32Add);
}
I32Sub => {
self.sink.emit(isa::InstructionInternal::I32Sub);
}
I32Mul => {
self.sink.emit(isa::InstructionInternal::I32Mul);
}
I32DivS => {
self.sink.emit(isa::InstructionInternal::I32DivS);
}
I32DivU => {
self.sink.emit(isa::InstructionInternal::I32DivU);
}
I32RemS => {
self.sink.emit(isa::InstructionInternal::I32RemS);
}
I32RemU => {
self.sink.emit(isa::InstructionInternal::I32RemU);
}
I32And => {
self.sink.emit(isa::InstructionInternal::I32And);
}
I32Or => {
self.sink.emit(isa::InstructionInternal::I32Or);
}
I32Xor => {
self.sink.emit(isa::InstructionInternal::I32Xor);
}
I32Shl => {
self.sink.emit(isa::InstructionInternal::I32Shl);
}
I32ShrS => {
self.sink.emit(isa::InstructionInternal::I32ShrS);
}
I32ShrU => {
self.sink.emit(isa::InstructionInternal::I32ShrU);
}
I32Rotl => {
self.sink.emit(isa::InstructionInternal::I32Rotl);
}
I32Rotr => {
self.sink.emit(isa::InstructionInternal::I32Rotr);
}
I64Clz => {
self.sink.emit(isa::InstructionInternal::I64Clz);
}
I64Ctz => {
self.sink.emit(isa::InstructionInternal::I64Ctz);
}
I64Popcnt => {
self.sink.emit(isa::InstructionInternal::I64Popcnt);
}
I64Add => {
self.sink.emit(isa::InstructionInternal::I64Add);
}
I64Sub => {
self.sink.emit(isa::InstructionInternal::I64Sub);
}
I64Mul => {
self.sink.emit(isa::InstructionInternal::I64Mul);
}
I64DivS => {
self.sink.emit(isa::InstructionInternal::I64DivS);
}
I64DivU => {
self.sink.emit(isa::InstructionInternal::I64DivU);
}
I64RemS => {
self.sink.emit(isa::InstructionInternal::I64RemS);
}
I64RemU => {
self.sink.emit(isa::InstructionInternal::I64RemU);
}
I64And => {
self.sink.emit(isa::InstructionInternal::I64And);
}
I64Or => {
self.sink.emit(isa::InstructionInternal::I64Or);
}
I64Xor => {
self.sink.emit(isa::InstructionInternal::I64Xor);
}
I64Shl => {
self.sink.emit(isa::InstructionInternal::I64Shl);
}
I64ShrS => {
self.sink.emit(isa::InstructionInternal::I64ShrS);
}
I64ShrU => {
self.sink.emit(isa::InstructionInternal::I64ShrU);
}
I64Rotl => {
self.sink.emit(isa::InstructionInternal::I64Rotl);
}
I64Rotr => {
self.sink.emit(isa::InstructionInternal::I64Rotr);
}
F32Abs => {
self.sink.emit(isa::InstructionInternal::F32Abs);
}
F32Neg => {
self.sink.emit(isa::InstructionInternal::F32Neg);
}
F32Ceil => {
self.sink.emit(isa::InstructionInternal::F32Ceil);
}
F32Floor => {
self.sink.emit(isa::InstructionInternal::F32Floor);
}
F32Trunc => {
self.sink.emit(isa::InstructionInternal::F32Trunc);
}
F32Nearest => {
self.sink.emit(isa::InstructionInternal::F32Nearest);
}
F32Sqrt => {
self.sink.emit(isa::InstructionInternal::F32Sqrt);
}
F32Add => {
self.sink.emit(isa::InstructionInternal::F32Add);
}
F32Sub => {
self.sink.emit(isa::InstructionInternal::F32Sub);
}
F32Mul => {
self.sink.emit(isa::InstructionInternal::F32Mul);
}
F32Div => {
self.sink.emit(isa::InstructionInternal::F32Div);
}
F32Min => {
self.sink.emit(isa::InstructionInternal::F32Min);
}
F32Max => {
self.sink.emit(isa::InstructionInternal::F32Max);
}
F32Copysign => {
self.sink.emit(isa::InstructionInternal::F32Copysign);
}
F64Abs => {
self.sink.emit(isa::InstructionInternal::F64Abs);
}
F64Neg => {
self.sink.emit(isa::InstructionInternal::F64Neg);
}
F64Ceil => {
self.sink.emit(isa::InstructionInternal::F64Ceil);
}
F64Floor => {
self.sink.emit(isa::InstructionInternal::F64Floor);
}
F64Trunc => {
self.sink.emit(isa::InstructionInternal::F64Trunc);
}
F64Nearest => {
self.sink.emit(isa::InstructionInternal::F64Nearest);
}
F64Sqrt => {
self.sink.emit(isa::InstructionInternal::F64Sqrt);
}
F64Add => {
self.sink.emit(isa::InstructionInternal::F64Add);
}
F64Sub => {
self.sink.emit(isa::InstructionInternal::F64Sub);
}
F64Mul => {
self.sink.emit(isa::InstructionInternal::F64Mul);
}
F64Div => {
self.sink.emit(isa::InstructionInternal::F64Div);
}
F64Min => {
self.sink.emit(isa::InstructionInternal::F64Min);
}
F64Max => {
self.sink.emit(isa::InstructionInternal::F64Max);
}
F64Copysign => {
self.sink.emit(isa::InstructionInternal::F64Copysign);
}
I32WrapI64 => {
self.sink.emit(isa::InstructionInternal::I32WrapI64);
}
I32TruncSF32 => {
self.sink.emit(isa::InstructionInternal::I32TruncSF32);
}
I32TruncUF32 => {
self.sink.emit(isa::InstructionInternal::I32TruncUF32);
}
I32TruncSF64 => {
self.sink.emit(isa::InstructionInternal::I32TruncSF64);
}
I32TruncUF64 => {
self.sink.emit(isa::InstructionInternal::I32TruncUF64);
}
I64ExtendSI32 => {
self.sink.emit(isa::InstructionInternal::I64ExtendSI32);
}
I64ExtendUI32 => {
self.sink.emit(isa::InstructionInternal::I64ExtendUI32);
}
I64TruncSF32 => {
self.sink.emit(isa::InstructionInternal::I64TruncSF32);
}
I64TruncUF32 => {
self.sink.emit(isa::InstructionInternal::I64TruncUF32);
}
I64TruncSF64 => {
self.sink.emit(isa::InstructionInternal::I64TruncSF64);
}
I64TruncUF64 => {
self.sink.emit(isa::InstructionInternal::I64TruncUF64);
}
F32ConvertSI32 => {
self.sink.emit(isa::InstructionInternal::F32ConvertSI32);
}
F32ConvertUI32 => {
self.sink.emit(isa::InstructionInternal::F32ConvertUI32);
}
F32ConvertSI64 => {
self.sink.emit(isa::InstructionInternal::F32ConvertSI64);
}
F32ConvertUI64 => {
self.sink.emit(isa::InstructionInternal::F32ConvertUI64);
}
F32DemoteF64 => {
self.sink.emit(isa::InstructionInternal::F32DemoteF64);
}
F64ConvertSI32 => {
self.sink.emit(isa::InstructionInternal::F64ConvertSI32);
}
F64ConvertUI32 => {
self.sink.emit(isa::InstructionInternal::F64ConvertUI32);
}
F64ConvertSI64 => {
self.sink.emit(isa::InstructionInternal::F64ConvertSI64);
}
F64ConvertUI64 => {
self.sink.emit(isa::InstructionInternal::F64ConvertUI64);
}
F64PromoteF32 => {
self.sink.emit(isa::InstructionInternal::F64PromoteF32);
}
I32ReinterpretF32 => {
self.sink.emit(isa::InstructionInternal::I32ReinterpretF32);
}
I64ReinterpretF64 => {
self.sink.emit(isa::InstructionInternal::I64ReinterpretF64);
}
F32ReinterpretI32 => {
self.sink.emit(isa::InstructionInternal::F32ReinterpretI32);
}
F64ReinterpretI64 => {
self.sink.emit(isa::InstructionInternal::F64ReinterpretI64);
}
}
Ok(Outcome::NextInstruction)
}
}
fn top_label(frame_stack: &[CompilerFrame]) -> &CompilerFrame {
// TODO: This actually isn't safe.
frame_stack
.last()
.expect("this function can't be called with empty frame stack")
}
fn require_label(
depth: u32,
frame_stack: &[CompilerFrame],
) -> Result<&CompilerFrame, Error> {
// TODO: Remove err
Ok(frame_stack.get(depth as usize).expect("unreachable"))
}
fn require_target(
depth: u32,
value_stack_height: u32,
frame_stack: &[CompilerFrame],
) -> Target {
let is_stack_polymorphic = top_label(frame_stack).polymorphic_stack;
let frame =
require_label(depth, frame_stack).expect("require_target called with a bogus depth");
// Find out how many values we need to keep (copy to the new stack location after the drop).
let keep: isa::Keep = match (frame.frame_type, frame.block_type) {
// A loop doesn't take a value upon a branch. It can return value
// only via reaching it's closing `End` operator.
(BlockFrameType::Loop { .. }, _) => isa::Keep::None,
(_, BlockType::Value(_)) => isa::Keep::Single,
(_, BlockType::NoResult) => isa::Keep::None,
};
// Find out how many values we need to discard.
let drop = if is_stack_polymorphic {
// Polymorphic stack is a weird state. Fortunately, it always about the code that
// will not be executed, so we don't bother and return 0 here.
0
} else {
assert!(
value_stack_height >= frame.value_stack_len,
"Stack underflow detected: value stack height ({}) is lower than minimum stack len ({})",
value_stack_height,
frame.value_stack_len,
);
assert!(
(value_stack_height as u32 - frame.value_stack_len as u32) >= keep as u32,
"Stack underflow detected: asked to keep {:?} values, but there are only {}",
keep,
value_stack_height as u32 - frame.value_stack_len as u32,
);
(value_stack_height as u32 - frame.value_stack_len as u32) - keep as u32
};
Target {
label: frame.frame_type.br_destination(),
drop_keep: isa::DropKeep { drop, keep },
}
}
fn drop_keep_return(
locals: &Locals,
value_stack_height: u32,
frame_stack: &[CompilerFrame],
) -> isa::DropKeep {
assert!(
!frame_stack.is_empty(),
"drop_keep_return can't be called with the frame stack empty"
);
let deepest = (frame_stack.len() - 1) as u32;
let mut drop_keep = require_target(deepest, value_stack_height, frame_stack).drop_keep;
// Drop all local variables and parameters upon exit.
drop_keep.drop += locals.count();
drop_keep
}
fn require_local(locals: &Locals, idx: u32) -> Result<ValueType, Error> {
Ok(locals.type_of_local(idx)?)
}
/// Returns a relative depth on the stack of a local variable specified
/// by `idx`.
///
/// See stack layout definition in mod isa.
fn relative_local_depth(
idx: u32,
locals: &Locals,
value_stack_height: u32,
) -> Result<u32, Error> {
let locals_and_params_count = locals.count();
let depth = value_stack_height
.checked_add(locals_and_params_count)
.and_then(|x| x.checked_sub(idx))
.ok_or_else(|| Error(String::from("Locals range not in 32-bit range")))?;
Ok(depth)
}
}
/// Function validator.
struct Validator;