// The Module object: Our interface to the outside world. We import // and export values on it, and do the work to get that through // closure compiler if necessary. There are various ways Module can be used: // 1. Not defined. We create it here // 2. A function parameter, function(Module) { ..generated code.. } // 3. pre-run appended it, var Module = {}; ..generated code.. // 4. External script tag defines var Module. // We need to do an eval in order to handle the closure compiler // case, where this code here is minified but Module was defined // elsewhere (e.g. case 4 above). We also need to check if Module // already exists (e.g. case 3 above). // Note that if you want to run closure, and also to use Module // after the generated code, you will need to define var Module = {}; // before the code. Then that object will be used in the code, and you // can continue to use Module afterwards as well. var Module; if (!Module) Module = (typeof Module !== 'undefined' ? Module : null) || {}; // Sometimes an existing Module object exists with properties // meant to overwrite the default module functionality. Here // we collect those properties and reapply _after_ we configure // the current environment's defaults to avoid having to be so // defensive during initialization. var moduleOverrides = {}; for (var key in Module) { if (Module.hasOwnProperty(key)) { moduleOverrides[key] = Module[key]; } } // The environment setup code below is customized to use Module. // *** Environment setup code *** var ENVIRONMENT_IS_WEB = false; var ENVIRONMENT_IS_WORKER = false; var ENVIRONMENT_IS_NODE = false; var ENVIRONMENT_IS_SHELL = false; // Three configurations we can be running in: // 1) We could be the application main() thread running in the main JS UI thread. (ENVIRONMENT_IS_WORKER == false and ENVIRONMENT_IS_PTHREAD == false) // 2) We could be the application main() thread proxied to worker. (with Emscripten -s PROXY_TO_WORKER=1) (ENVIRONMENT_IS_WORKER == true, ENVIRONMENT_IS_PTHREAD == false) // 3) We could be an application pthread running in a worker. (ENVIRONMENT_IS_WORKER == true and ENVIRONMENT_IS_PTHREAD == true) if (Module['ENVIRONMENT']) { if (Module['ENVIRONMENT'] === 'WEB') { ENVIRONMENT_IS_WEB = true; } else if (Module['ENVIRONMENT'] === 'WORKER') { ENVIRONMENT_IS_WORKER = true; } else if (Module['ENVIRONMENT'] === 'NODE') { ENVIRONMENT_IS_NODE = true; } else if (Module['ENVIRONMENT'] === 'SHELL') { ENVIRONMENT_IS_SHELL = true; } else { throw new Error('The provided Module[\'ENVIRONMENT\'] value is not valid. It must be one of: WEB|WORKER|NODE|SHELL.'); } } else { ENVIRONMENT_IS_WEB = typeof window === 'object'; ENVIRONMENT_IS_WORKER = typeof importScripts === 'function'; ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function' && !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_WORKER; ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; } if (ENVIRONMENT_IS_NODE) { // Expose functionality in the same simple way that the shells work // Note that we pollute the global namespace here, otherwise we break in node if (!Module['print']) Module['print'] = console.log; if (!Module['printErr']) Module['printErr'] = console.warn; var nodeFS; var nodePath; Module['read'] = function read(filename, binary) { if (!nodeFS) nodeFS = require('fs'); if (!nodePath) nodePath = require('path'); filename = nodePath['normalize'](filename); var ret = nodeFS['readFileSync'](filename); return binary ? ret : ret.toString(); }; Module['readBinary'] = function readBinary(filename) { var ret = Module['read'](filename, true); if (!ret.buffer) { ret = new Uint8Array(ret); } assert(ret.buffer); return ret; }; Module['load'] = function load(f) { globalEval(read(f)); }; if (!Module['thisProgram']) { if (process['argv'].length > 1) { Module['thisProgram'] = process['argv'][1].replace(/\\/g, '/'); } else { Module['thisProgram'] = 'unknown-program'; } } Module['arguments'] = process['argv'].slice(2); if (typeof module !== 'undefined') { module['exports'] = Module; } process['on']('uncaughtException', function(ex) { // suppress ExitStatus exceptions from showing an error if (!(ex instanceof ExitStatus)) { throw ex; } }); Module['inspect'] = function () { return '[Emscripten Module object]'; }; } else if (ENVIRONMENT_IS_SHELL) { if (!Module['print']) Module['print'] = print; if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm if (typeof read != 'undefined') { Module['read'] = read; } else { Module['read'] = function read() { throw 'no read() available' }; } Module['readBinary'] = function readBinary(f) { if (typeof readbuffer === 'function') { return new Uint8Array(readbuffer(f)); } var data = read(f, 'binary'); assert(typeof data === 'object'); return data; }; if (typeof scriptArgs != 'undefined') { Module['arguments'] = scriptArgs; } else if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } if (typeof quit === 'function') { Module['quit'] = function(status, toThrow) { quit(status); } } } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { Module['read'] = function read(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.send(null); return xhr.responseText; }; if (ENVIRONMENT_IS_WORKER) { Module['readBinary'] = function read(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.responseType = 'arraybuffer'; xhr.send(null); return xhr.response; }; } Module['readAsync'] = function readAsync(url, onload, onerror) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, true); xhr.responseType = 'arraybuffer'; xhr.onload = function xhr_onload() { if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0 onload(xhr.response); } else { onerror(); } }; xhr.onerror = onerror; xhr.send(null); }; if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } if (typeof console !== 'undefined') { if (!Module['print']) Module['print'] = function print(x) { console.log(x); }; if (!Module['printErr']) Module['printErr'] = function printErr(x) { console.warn(x); }; } else { // Probably a worker, and without console.log. We can do very little here... var TRY_USE_DUMP = false; if (!Module['print']) Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) { dump(x); }) : (function(x) { // self.postMessage(x); // enable this if you want stdout to be sent as messages })); } if (ENVIRONMENT_IS_WORKER) { Module['load'] = importScripts; } if (typeof Module['setWindowTitle'] === 'undefined') { Module['setWindowTitle'] = function(title) { document.title = title }; } } else { // Unreachable because SHELL is dependant on the others throw 'Unknown runtime environment. Where are we?'; } function globalEval(x) { eval.call(null, x); } if (!Module['load'] && Module['read']) { Module['load'] = function load(f) { globalEval(Module['read'](f)); }; } if (!Module['print']) { Module['print'] = function(){}; } if (!Module['printErr']) { Module['printErr'] = Module['print']; } if (!Module['arguments']) { Module['arguments'] = []; } if (!Module['thisProgram']) { Module['thisProgram'] = './this.program'; } if (!Module['quit']) { Module['quit'] = function(status, toThrow) { throw toThrow; } } // *** Environment setup code *** // Closure helpers Module.print = Module['print']; Module.printErr = Module['printErr']; // Callbacks Module['preRun'] = []; Module['postRun'] = []; // Merge back in the overrides for (var key in moduleOverrides) { if (moduleOverrides.hasOwnProperty(key)) { Module[key] = moduleOverrides[key]; } } // Free the object hierarchy contained in the overrides, this lets the GC // reclaim data used e.g. in memoryInitializerRequest, which is a large typed array. moduleOverrides = undefined; // {{PREAMBLE_ADDITIONS}} // === Preamble library stuff === // Documentation for the public APIs defined in this file must be updated in: // site/source/docs/api_reference/preamble.js.rst // A prebuilt local version of the documentation is available at: // site/build/text/docs/api_reference/preamble.js.txt // You can also build docs locally as HTML or other formats in site/ // An online HTML version (which may be of a different version of Emscripten) // is up at http://kripken.github.io/emscripten-site/docs/api_reference/preamble.js.html //======================================== // Runtime code shared with compiler //======================================== var Runtime = { setTempRet0: function (value) { tempRet0 = value; return value; }, getTempRet0: function () { return tempRet0; }, stackSave: function () { return STACKTOP; }, stackRestore: function (stackTop) { STACKTOP = stackTop; }, getNativeTypeSize: function (type) { switch (type) { case 'i1': case 'i8': return 1; case 'i16': return 2; case 'i32': return 4; case 'i64': return 8; case 'float': return 4; case 'double': return 8; default: { if (type[type.length-1] === '*') { return Runtime.QUANTUM_SIZE; // A pointer } else if (type[0] === 'i') { var bits = parseInt(type.substr(1)); assert(bits % 8 === 0); return bits/8; } else { return 0; } } } }, getNativeFieldSize: function (type) { return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE); }, STACK_ALIGN: 16, prepVararg: function (ptr, type) { if (type === 'double' || type === 'i64') { // move so the load is aligned if (ptr & 7) { assert((ptr & 7) === 4); ptr += 4; } } else { assert((ptr & 3) === 0); } return ptr; }, getAlignSize: function (type, size, vararg) { // we align i64s and doubles on 64-bit boundaries, unlike x86 if (!vararg && (type == 'i64' || type == 'double')) return 8; if (!type) return Math.min(size, 8); // align structures internally to 64 bits return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE); }, dynCall: function (sig, ptr, args) { if (args && args.length) { assert(args.length == sig.length-1); assert(('dynCall_' + sig) in Module, 'bad function pointer type - no table for sig \'' + sig + '\''); return Module['dynCall_' + sig].apply(null, [ptr].concat(args)); } else { assert(sig.length == 1); assert(('dynCall_' + sig) in Module, 'bad function pointer type - no table for sig \'' + sig + '\''); return Module['dynCall_' + sig].call(null, ptr); } }, functionPointers: [], addFunction: function (func) { for (var i = 0; i < Runtime.functionPointers.length; i++) { if (!Runtime.functionPointers[i]) { Runtime.functionPointers[i] = func; return 2*(1 + i); } } throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.'; }, removeFunction: function (index) { Runtime.functionPointers[(index-2)/2] = null; }, warnOnce: function (text) { if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {}; if (!Runtime.warnOnce.shown[text]) { Runtime.warnOnce.shown[text] = 1; Module.printErr(text); } }, funcWrappers: {}, getFuncWrapper: function (func, sig) { assert(sig); if (!Runtime.funcWrappers[sig]) { Runtime.funcWrappers[sig] = {}; } var sigCache = Runtime.funcWrappers[sig]; if (!sigCache[func]) { // optimize away arguments usage in common cases if (sig.length === 1) { sigCache[func] = function dynCall_wrapper() { return Runtime.dynCall(sig, func); }; } else if (sig.length === 2) { sigCache[func] = function dynCall_wrapper(arg) { return Runtime.dynCall(sig, func, [arg]); }; } else { // general case sigCache[func] = function dynCall_wrapper() { return Runtime.dynCall(sig, func, Array.prototype.slice.call(arguments)); }; } } return sigCache[func]; }, getCompilerSetting: function (name) { throw 'You must build with -s RETAIN_COMPILER_SETTINGS=1 for Runtime.getCompilerSetting or emscripten_get_compiler_setting to work'; }, stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = (((STACKTOP)+15)&-16);(assert((((STACKTOP|0) < (STACK_MAX|0))|0))|0); return ret; }, staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + (assert(!staticSealed),size))|0;STATICTOP = (((STATICTOP)+15)&-16); return ret; }, dynamicAlloc: function (size) { assert(DYNAMICTOP_PTR);var ret = HEAP32[DYNAMICTOP_PTR>>2];var end = (((ret + size + 15)|0) & -16);HEAP32[DYNAMICTOP_PTR>>2] = end;if (end >= TOTAL_MEMORY) {var success = enlargeMemory();if (!success) {HEAP32[DYNAMICTOP_PTR>>2] = ret;return 0;}}return ret;}, alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 16))*(quantum ? quantum : 16); return ret; }, makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? ((+((low>>>0)))+((+((high>>>0)))*4294967296.0)) : ((+((low>>>0)))+((+((high|0)))*4294967296.0))); return ret; }, GLOBAL_BASE: 1024, QUANTUM_SIZE: 4, __dummy__: 0 } Module["Runtime"] = Runtime; //======================================== // Runtime essentials //======================================== var ABORT = 0; // whether we are quitting the application. no code should run after this. set in exit() and abort() var EXITSTATUS = 0; function assert(condition, text) { if (!condition) { abort('Assertion failed: ' + text); } } var globalScope = this; // Returns the C function with a specified identifier (for C++, you need to do manual name mangling) function getCFunc(ident) { var func = Module['_' + ident]; // closure exported function if (!func) { try { func = eval('_' + ident); } catch(e) {} } assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)'); return func; } var cwrap, ccall; (function(){ var JSfuncs = { // Helpers for cwrap -- it can't refer to Runtime directly because it might // be renamed by closure, instead it calls JSfuncs['stackSave'].body to find // out what the minified function name is. 'stackSave': function() { Runtime.stackSave() }, 'stackRestore': function() { Runtime.stackRestore() }, // type conversion from js to c 'arrayToC' : function(arr) { var ret = Runtime.stackAlloc(arr.length); writeArrayToMemory(arr, ret); return ret; }, 'stringToC' : function(str) { var ret = 0; if (str !== null && str !== undefined && str !== 0) { // null string // at most 4 bytes per UTF-8 code point, +1 for the trailing '\0' var len = (str.length << 2) + 1; ret = Runtime.stackAlloc(len); stringToUTF8(str, ret, len); } return ret; } }; // For fast lookup of conversion functions var toC = {'string' : JSfuncs['stringToC'], 'array' : JSfuncs['arrayToC']}; // C calling interface. ccall = function ccallFunc(ident, returnType, argTypes, args, opts) { var func = getCFunc(ident); var cArgs = []; var stack = 0; assert(returnType !== 'array', 'Return type should not be "array".'); if (args) { for (var i = 0; i < args.length; i++) { var converter = toC[argTypes[i]]; if (converter) { if (stack === 0) stack = Runtime.stackSave(); cArgs[i] = converter(args[i]); } else { cArgs[i] = args[i]; } } } var ret = func.apply(null, cArgs); if ((!opts || !opts.async) && typeof EmterpreterAsync === 'object') { assert(!EmterpreterAsync.state, 'cannot start async op with normal JS calling ccall'); } if (opts && opts.async) assert(!returnType, 'async ccalls cannot return values'); if (returnType === 'string') ret = Pointer_stringify(ret); if (stack !== 0) { if (opts && opts.async) { EmterpreterAsync.asyncFinalizers.push(function() { Runtime.stackRestore(stack); }); return; } Runtime.stackRestore(stack); } return ret; } var sourceRegex = /^function\s*[a-zA-Z$_0-9]*\s*\(([^)]*)\)\s*{\s*([^*]*?)[\s;]*(?:return\s*(.*?)[;\s]*)?}$/; function parseJSFunc(jsfunc) { // Match the body and the return value of a javascript function source var parsed = jsfunc.toString().match(sourceRegex).slice(1); return {arguments : parsed[0], body : parsed[1], returnValue: parsed[2]} } // sources of useful functions. we create this lazily as it can trigger a source decompression on this entire file var JSsource = null; function ensureJSsource() { if (!JSsource) { JSsource = {}; for (var fun in JSfuncs) { if (JSfuncs.hasOwnProperty(fun)) { // Elements of toCsource are arrays of three items: // the code, and the return value JSsource[fun] = parseJSFunc(JSfuncs[fun]); } } } } cwrap = function cwrap(ident, returnType, argTypes) { argTypes = argTypes || []; var cfunc = getCFunc(ident); // When the function takes numbers and returns a number, we can just return // the original function var numericArgs = argTypes.every(function(type){ return type === 'number'}); var numericRet = (returnType !== 'string'); if ( numericRet && numericArgs) { return cfunc; } // Creation of the arguments list (["$1","$2",...,"$nargs"]) var argNames = argTypes.map(function(x,i){return '$'+i}); var funcstr = "(function(" + argNames.join(',') + ") {"; var nargs = argTypes.length; if (!numericArgs) { // Generate the code needed to convert the arguments from javascript // values to pointers ensureJSsource(); funcstr += 'var stack = ' + JSsource['stackSave'].body + ';'; for (var i = 0; i < nargs; i++) { var arg = argNames[i], type = argTypes[i]; if (type === 'number') continue; var convertCode = JSsource[type + 'ToC']; // [code, return] funcstr += 'var ' + convertCode.arguments + ' = ' + arg + ';'; funcstr += convertCode.body + ';'; funcstr += arg + '=(' + convertCode.returnValue + ');'; } } // When the code is compressed, the name of cfunc is not literally 'cfunc' anymore var cfuncname = parseJSFunc(function(){return cfunc}).returnValue; // Call the function funcstr += 'var ret = ' + cfuncname + '(' + argNames.join(',') + ');'; if (!numericRet) { // Return type can only by 'string' or 'number' // Convert the result to a string var strgfy = parseJSFunc(function(){return Pointer_stringify}).returnValue; funcstr += 'ret = ' + strgfy + '(ret);'; } funcstr += "if (typeof EmterpreterAsync === 'object') { assert(!EmterpreterAsync.state, 'cannot start async op with normal JS calling cwrap') }"; if (!numericArgs) { // If we had a stack, restore it ensureJSsource(); funcstr += JSsource['stackRestore'].body.replace('()', '(stack)') + ';'; } funcstr += 'return ret})'; return eval(funcstr); }; })(); Module["ccall"] = ccall; Module["cwrap"] = cwrap; function setValue(ptr, value, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': HEAP8[((ptr)>>0)]=value; break; case 'i8': HEAP8[((ptr)>>0)]=value; break; case 'i16': HEAP16[((ptr)>>1)]=value; break; case 'i32': HEAP32[((ptr)>>2)]=value; break; case 'i64': (tempI64 = [value>>>0,(tempDouble=value,(+(Math_abs(tempDouble))) >= 1.0 ? (tempDouble > 0.0 ? ((Math_min((+(Math_floor((tempDouble)/4294967296.0))), 4294967295.0))|0)>>>0 : (~~((+(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/4294967296.0)))))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break; case 'float': HEAPF32[((ptr)>>2)]=value; break; case 'double': HEAPF64[((ptr)>>3)]=value; break; default: abort('invalid type for setValue: ' + type); } } Module["setValue"] = setValue; function getValue(ptr, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': return HEAP8[((ptr)>>0)]; case 'i8': return HEAP8[((ptr)>>0)]; case 'i16': return HEAP16[((ptr)>>1)]; case 'i32': return HEAP32[((ptr)>>2)]; case 'i64': return HEAP32[((ptr)>>2)]; case 'float': return HEAPF32[((ptr)>>2)]; case 'double': return HEAPF64[((ptr)>>3)]; default: abort('invalid type for setValue: ' + type); } return null; } Module["getValue"] = getValue; var ALLOC_NORMAL = 0; // Tries to use _malloc() var ALLOC_STACK = 1; // Lives for the duration of the current function call var ALLOC_STATIC = 2; // Cannot be freed var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk var ALLOC_NONE = 4; // Do not allocate Module["ALLOC_NORMAL"] = ALLOC_NORMAL; Module["ALLOC_STACK"] = ALLOC_STACK; Module["ALLOC_STATIC"] = ALLOC_STATIC; Module["ALLOC_DYNAMIC"] = ALLOC_DYNAMIC; Module["ALLOC_NONE"] = ALLOC_NONE; // allocate(): This is for internal use. You can use it yourself as well, but the interface // is a little tricky (see docs right below). The reason is that it is optimized // for multiple syntaxes to save space in generated code. So you should // normally not use allocate(), and instead allocate memory using _malloc(), // initialize it with setValue(), and so forth. // @slab: An array of data, or a number. If a number, then the size of the block to allocate, // in *bytes* (note that this is sometimes confusing: the next parameter does not // affect this!) // @types: Either an array of types, one for each byte (or 0 if no type at that position), // or a single type which is used for the entire block. This only matters if there // is initial data - if @slab is a number, then this does not matter at all and is // ignored. // @allocator: How to allocate memory, see ALLOC_* function allocate(slab, types, allocator, ptr) { var zeroinit, size; if (typeof slab === 'number') { zeroinit = true; size = slab; } else { zeroinit = false; size = slab.length; } var singleType = typeof types === 'string' ? types : null; var ret; if (allocator == ALLOC_NONE) { ret = ptr; } else { ret = [typeof _malloc === 'function' ? _malloc : Runtime.staticAlloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length)); } if (zeroinit) { var ptr = ret, stop; assert((ret & 3) == 0); stop = ret + (size & ~3); for (; ptr < stop; ptr += 4) { HEAP32[((ptr)>>2)]=0; } stop = ret + size; while (ptr < stop) { HEAP8[((ptr++)>>0)]=0; } return ret; } if (singleType === 'i8') { if (slab.subarray || slab.slice) { HEAPU8.set(slab, ret); } else { HEAPU8.set(new Uint8Array(slab), ret); } return ret; } var i = 0, type, typeSize, previousType; while (i < size) { var curr = slab[i]; if (typeof curr === 'function') { curr = Runtime.getFunctionIndex(curr); } type = singleType || types[i]; if (type === 0) { i++; continue; } assert(type, 'Must know what type to store in allocate!'); if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later setValue(ret+i, curr, type); // no need to look up size unless type changes, so cache it if (previousType !== type) { typeSize = Runtime.getNativeTypeSize(type); previousType = type; } i += typeSize; } return ret; } Module["allocate"] = allocate; // Allocate memory during any stage of startup - static memory early on, dynamic memory later, malloc when ready function getMemory(size) { if (!staticSealed) return Runtime.staticAlloc(size); if (!runtimeInitialized) return Runtime.dynamicAlloc(size); return _malloc(size); } Module["getMemory"] = getMemory; function Pointer_stringify(ptr, /* optional */ length) { if (length === 0 || !ptr) return ''; // TODO: use TextDecoder // Find the length, and check for UTF while doing so var hasUtf = 0; var t; var i = 0; while (1) { assert(ptr + i < TOTAL_MEMORY); t = HEAPU8[(((ptr)+(i))>>0)]; hasUtf |= t; if (t == 0 && !length) break; i++; if (length && i == length) break; } if (!length) length = i; var ret = ''; if (hasUtf < 128) { var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack var curr; while (length > 0) { curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK))); ret = ret ? ret + curr : curr; ptr += MAX_CHUNK; length -= MAX_CHUNK; } return ret; } return Module['UTF8ToString'](ptr); } Module["Pointer_stringify"] = Pointer_stringify; // Given a pointer 'ptr' to a null-terminated ASCII-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function AsciiToString(ptr) { var str = ''; while (1) { var ch = HEAP8[((ptr++)>>0)]; if (!ch) return str; str += String.fromCharCode(ch); } } Module["AsciiToString"] = AsciiToString; // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in ASCII form. The copy will require at most str.length+1 bytes of space in the HEAP. function stringToAscii(str, outPtr) { return writeAsciiToMemory(str, outPtr, false); } Module["stringToAscii"] = stringToAscii; // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the given array that contains uint8 values, returns // a copy of that string as a Javascript String object. var UTF8Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf8') : undefined; function UTF8ArrayToString(u8Array, idx) { var endPtr = idx; // TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself. // Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage. while (u8Array[endPtr]) ++endPtr; if (endPtr - idx > 16 && u8Array.subarray && UTF8Decoder) { return UTF8Decoder.decode(u8Array.subarray(idx, endPtr)); } else { var u0, u1, u2, u3, u4, u5; var str = ''; while (1) { // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 u0 = u8Array[idx++]; if (!u0) return str; if (!(u0 & 0x80)) { str += String.fromCharCode(u0); continue; } u1 = u8Array[idx++] & 63; if ((u0 & 0xE0) == 0xC0) { str += String.fromCharCode(((u0 & 31) << 6) | u1); continue; } u2 = u8Array[idx++] & 63; if ((u0 & 0xF0) == 0xE0) { u0 = ((u0 & 15) << 12) | (u1 << 6) | u2; } else { u3 = u8Array[idx++] & 63; if ((u0 & 0xF8) == 0xF0) { u0 = ((u0 & 7) << 18) | (u1 << 12) | (u2 << 6) | u3; } else { u4 = u8Array[idx++] & 63; if ((u0 & 0xFC) == 0xF8) { u0 = ((u0 & 3) << 24) | (u1 << 18) | (u2 << 12) | (u3 << 6) | u4; } else { u5 = u8Array[idx++] & 63; u0 = ((u0 & 1) << 30) | (u1 << 24) | (u2 << 18) | (u3 << 12) | (u4 << 6) | u5; } } } if (u0 < 0x10000) { str += String.fromCharCode(u0); } else { var ch = u0 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } } } } Module["UTF8ArrayToString"] = UTF8ArrayToString; // Given a pointer 'ptr' to a null-terminated UTF8-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF8ToString(ptr) { return UTF8ArrayToString(HEAPU8,ptr); } Module["UTF8ToString"] = UTF8ToString; // Copies the given Javascript String object 'str' to the given byte array at address 'outIdx', // encoded in UTF8 form and null-terminated. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outU8Array: the array to copy to. Each index in this array is assumed to be one 8-byte element. // outIdx: The starting offset in the array to begin the copying. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=1, only the null terminator will be written and nothing else. // maxBytesToWrite=0 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8Array(str, outU8Array, outIdx, maxBytesToWrite) { if (!(maxBytesToWrite > 0)) // Parameter maxBytesToWrite is not optional. Negative values, 0, null, undefined and false each don't write out any bytes. return 0; var startIdx = outIdx; var endIdx = outIdx + maxBytesToWrite - 1; // -1 for string null terminator. for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 // For UTF8 byte structure, see http://en.wikipedia.org/wiki/UTF-8#Description and https://www.ietf.org/rfc/rfc2279.txt and https://tools.ietf.org/html/rfc3629 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { if (outIdx >= endIdx) break; outU8Array[outIdx++] = u; } else if (u <= 0x7FF) { if (outIdx + 1 >= endIdx) break; outU8Array[outIdx++] = 0xC0 | (u >> 6); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0xFFFF) { if (outIdx + 2 >= endIdx) break; outU8Array[outIdx++] = 0xE0 | (u >> 12); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x1FFFFF) { if (outIdx + 3 >= endIdx) break; outU8Array[outIdx++] = 0xF0 | (u >> 18); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else if (u <= 0x3FFFFFF) { if (outIdx + 4 >= endIdx) break; outU8Array[outIdx++] = 0xF8 | (u >> 24); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } else { if (outIdx + 5 >= endIdx) break; outU8Array[outIdx++] = 0xFC | (u >> 30); outU8Array[outIdx++] = 0x80 | ((u >> 24) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 18) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 12) & 63); outU8Array[outIdx++] = 0x80 | ((u >> 6) & 63); outU8Array[outIdx++] = 0x80 | (u & 63); } } // Null-terminate the pointer to the buffer. outU8Array[outIdx] = 0; return outIdx - startIdx; } Module["stringToUTF8Array"] = stringToUTF8Array; // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF8 form. The copy will require at most str.length*4+1 bytes of space in the HEAP. // Use the function lengthBytesUTF8 to compute the exact number of bytes (excluding null terminator) that this function will write. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF8(str, outPtr, maxBytesToWrite) { assert(typeof maxBytesToWrite == 'number', 'stringToUTF8(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!'); return stringToUTF8Array(str, HEAPU8,outPtr, maxBytesToWrite); } Module["stringToUTF8"] = stringToUTF8; // Returns the number of bytes the given Javascript string takes if encoded as a UTF8 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF8(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! So decode UTF16->UTF32->UTF8. // See http://unicode.org/faq/utf_bom.html#utf16-3 var u = str.charCodeAt(i); // possibly a lead surrogate if (u >= 0xD800 && u <= 0xDFFF) u = 0x10000 + ((u & 0x3FF) << 10) | (str.charCodeAt(++i) & 0x3FF); if (u <= 0x7F) { ++len; } else if (u <= 0x7FF) { len += 2; } else if (u <= 0xFFFF) { len += 3; } else if (u <= 0x1FFFFF) { len += 4; } else if (u <= 0x3FFFFFF) { len += 5; } else { len += 6; } } return len; } Module["lengthBytesUTF8"] = lengthBytesUTF8; // Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. var UTF16Decoder = typeof TextDecoder !== 'undefined' ? new TextDecoder('utf-16le') : undefined; function UTF16ToString(ptr) { assert(ptr % 2 == 0, 'Pointer passed to UTF16ToString must be aligned to two bytes!'); var endPtr = ptr; // TextDecoder needs to know the byte length in advance, it doesn't stop on null terminator by itself. // Also, use the length info to avoid running tiny strings through TextDecoder, since .subarray() allocates garbage. var idx = endPtr >> 1; while (HEAP16[idx]) ++idx; endPtr = idx << 1; if (endPtr - ptr > 32 && UTF16Decoder) { return UTF16Decoder.decode(HEAPU8.subarray(ptr, endPtr)); } else { var i = 0; var str = ''; while (1) { var codeUnit = HEAP16[(((ptr)+(i*2))>>1)]; if (codeUnit == 0) return str; ++i; // fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through. str += String.fromCharCode(codeUnit); } } } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF16 form. The copy will require at most str.length*4+2 bytes of space in the HEAP. // Use the function lengthBytesUTF16() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=2, only the null terminator will be written and nothing else. // maxBytesToWrite<2 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF16(str, outPtr, maxBytesToWrite) { assert(outPtr % 2 == 0, 'Pointer passed to stringToUTF16 must be aligned to two bytes!'); assert(typeof maxBytesToWrite == 'number', 'stringToUTF16(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!'); // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 2) return 0; maxBytesToWrite -= 2; // Null terminator. var startPtr = outPtr; var numCharsToWrite = (maxBytesToWrite < str.length*2) ? (maxBytesToWrite / 2) : str.length; for (var i = 0; i < numCharsToWrite; ++i) { // charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP. var codeUnit = str.charCodeAt(i); // possibly a lead surrogate HEAP16[((outPtr)>>1)]=codeUnit; outPtr += 2; } // Null-terminate the pointer to the HEAP. HEAP16[((outPtr)>>1)]=0; return outPtr - startPtr; } // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF16(str) { return str.length*2; } function UTF32ToString(ptr) { assert(ptr % 4 == 0, 'Pointer passed to UTF32ToString must be aligned to four bytes!'); var i = 0; var str = ''; while (1) { var utf32 = HEAP32[(((ptr)+(i*4))>>2)]; if (utf32 == 0) return str; ++i; // Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing. // See http://unicode.org/faq/utf_bom.html#utf16-3 if (utf32 >= 0x10000) { var ch = utf32 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } else { str += String.fromCharCode(utf32); } } } // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF32 form. The copy will require at most str.length*4+4 bytes of space in the HEAP. // Use the function lengthBytesUTF32() to compute the exact number of bytes (excluding null terminator) that this function will write. // Parameters: // str: the Javascript string to copy. // outPtr: Byte address in Emscripten HEAP where to write the string to. // maxBytesToWrite: The maximum number of bytes this function can write to the array. This count should include the null // terminator, i.e. if maxBytesToWrite=4, only the null terminator will be written and nothing else. // maxBytesToWrite<4 does not write any bytes to the output, not even the null terminator. // Returns the number of bytes written, EXCLUDING the null terminator. function stringToUTF32(str, outPtr, maxBytesToWrite) { assert(outPtr % 4 == 0, 'Pointer passed to stringToUTF32 must be aligned to four bytes!'); assert(typeof maxBytesToWrite == 'number', 'stringToUTF32(str, outPtr, maxBytesToWrite) is missing the third parameter that specifies the length of the output buffer!'); // Backwards compatibility: if max bytes is not specified, assume unsafe unbounded write is allowed. if (maxBytesToWrite === undefined) { maxBytesToWrite = 0x7FFFFFFF; } if (maxBytesToWrite < 4) return 0; var startPtr = outPtr; var endPtr = startPtr + maxBytesToWrite - 4; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); // possibly a lead surrogate if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) { var trailSurrogate = str.charCodeAt(++i); codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF); } HEAP32[((outPtr)>>2)]=codeUnit; outPtr += 4; if (outPtr + 4 > endPtr) break; } // Null-terminate the pointer to the HEAP. HEAP32[((outPtr)>>2)]=0; return outPtr - startPtr; } // Returns the number of bytes the given Javascript string takes if encoded as a UTF16 byte array, EXCLUDING the null terminator byte. function lengthBytesUTF32(str) { var len = 0; for (var i = 0; i < str.length; ++i) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. // See http://unicode.org/faq/utf_bom.html#utf16-3 var codeUnit = str.charCodeAt(i); if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) ++i; // possibly a lead surrogate, so skip over the tail surrogate. len += 4; } return len; } function demangle(func) { var __cxa_demangle_func = Module['___cxa_demangle'] || Module['__cxa_demangle']; if (__cxa_demangle_func) { try { var s = func.substr(1); var len = lengthBytesUTF8(s)+1; var buf = _malloc(len); stringToUTF8(s, buf, len); var status = _malloc(4); var ret = __cxa_demangle_func(buf, 0, 0, status); if (getValue(status, 'i32') === 0 && ret) { return Pointer_stringify(ret); } // otherwise, libcxxabi failed } catch(e) { // ignore problems here } finally { if (buf) _free(buf); if (status) _free(status); if (ret) _free(ret); } // failure when using libcxxabi, don't demangle return func; } Runtime.warnOnce('warning: build with -s DEMANGLE_SUPPORT=1 to link in libcxxabi demangling'); return func; } function demangleAll(text) { var regex = /__Z[\w\d_]+/g; return text.replace(regex, function(x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']'); }); } function jsStackTrace() { var err = new Error(); if (!err.stack) { // IE10+ special cases: It does have callstack info, but it is only populated if an Error object is thrown, // so try that as a special-case. try { throw new Error(0); } catch(e) { err = e; } if (!err.stack) { return '(no stack trace available)'; } } return err.stack.toString(); } function stackTrace() { var js = jsStackTrace(); if (Module['extraStackTrace']) js += '\n' + Module['extraStackTrace'](); return demangleAll(js); } Module["stackTrace"] = stackTrace; // Memory management var PAGE_SIZE = 16384; var WASM_PAGE_SIZE = 65536; var ASMJS_PAGE_SIZE = 16777216; var MIN_TOTAL_MEMORY = 16777216; function alignUp(x, multiple) { if (x % multiple > 0) { x += multiple - (x % multiple); } return x; } var HEAP; var buffer; var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; function updateGlobalBuffer(buf) { Module['buffer'] = buffer = buf; } function updateGlobalBufferViews() { Module['HEAP8'] = HEAP8 = new Int8Array(buffer); Module['HEAP16'] = HEAP16 = new Int16Array(buffer); Module['HEAP32'] = HEAP32 = new Int32Array(buffer); Module['HEAPU8'] = HEAPU8 = new Uint8Array(buffer); Module['HEAPU16'] = HEAPU16 = new Uint16Array(buffer); Module['HEAPU32'] = HEAPU32 = new Uint32Array(buffer); Module['HEAPF32'] = HEAPF32 = new Float32Array(buffer); Module['HEAPF64'] = HEAPF64 = new Float64Array(buffer); } var STATIC_BASE, STATICTOP, staticSealed; // static area var STACK_BASE, STACKTOP, STACK_MAX; // stack area var DYNAMIC_BASE, DYNAMICTOP_PTR; // dynamic area handled by sbrk STATIC_BASE = STATICTOP = STACK_BASE = STACKTOP = STACK_MAX = DYNAMIC_BASE = DYNAMICTOP_PTR = 0; staticSealed = false; // Initializes the stack cookie. Called at the startup of main and at the startup of each thread in pthreads mode. function writeStackCookie() { assert((STACK_MAX & 3) == 0); HEAPU32[(STACK_MAX >> 2)-1] = 0x02135467; HEAPU32[(STACK_MAX >> 2)-2] = 0x89BACDFE; } function checkStackCookie() { if (HEAPU32[(STACK_MAX >> 2)-1] != 0x02135467 || HEAPU32[(STACK_MAX >> 2)-2] != 0x89BACDFE) { abort('Stack overflow! Stack cookie has been overwritten, expected hex dwords 0x89BACDFE and 0x02135467, but received 0x' + HEAPU32[(STACK_MAX >> 2)-2].toString(16) + ' ' + HEAPU32[(STACK_MAX >> 2)-1].toString(16)); } // Also test the global address 0 for integrity. This check is not compatible with SAFE_SPLIT_MEMORY though, since that mode already tests all address 0 accesses on its own. if (HEAP32[0] !== 0x63736d65 /* 'emsc' */) throw 'Runtime error: The application has corrupted its heap memory area (address zero)!'; } function abortStackOverflow(allocSize) { abort('Stack overflow! Attempted to allocate ' + allocSize + ' bytes on the stack, but stack has only ' + (STACK_MAX - Module['asm'].stackSave() + allocSize) + ' bytes available!'); } function abortOnCannotGrowMemory() { abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with -s ALLOW_MEMORY_GROWTH=1 which allows increasing the size at runtime, or (3) if you want malloc to return NULL (0) instead of this abort, compile with -s ABORTING_MALLOC=0 '); } function enlargeMemory() { abortOnCannotGrowMemory(); } var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880; var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216; if (TOTAL_MEMORY < TOTAL_STACK) Module.printErr('TOTAL_MEMORY should be larger than TOTAL_STACK, was ' + TOTAL_MEMORY + '! (TOTAL_STACK=' + TOTAL_STACK + ')'); // Initialize the runtime's memory // check for full engine support (use string 'subarray' to avoid closure compiler confusion) assert(typeof Int32Array !== 'undefined' && typeof Float64Array !== 'undefined' && !!(new Int32Array(1)['subarray']) && !!(new Int32Array(1)['set']), 'JS engine does not provide full typed array support'); // Use a provided buffer, if there is one, or else allocate a new one if (Module['buffer']) { buffer = Module['buffer']; assert(buffer.byteLength === TOTAL_MEMORY, 'provided buffer should be ' + TOTAL_MEMORY + ' bytes, but it is ' + buffer.byteLength); } else { // Use a WebAssembly memory where available if (typeof WebAssembly === 'object' && typeof WebAssembly.Memory === 'function') { assert(TOTAL_MEMORY % WASM_PAGE_SIZE === 0); Module['wasmMemory'] = new WebAssembly.Memory({ 'initial': TOTAL_MEMORY / WASM_PAGE_SIZE, 'maximum': TOTAL_MEMORY / WASM_PAGE_SIZE }); buffer = Module['wasmMemory'].buffer; } else { buffer = new ArrayBuffer(TOTAL_MEMORY); } assert(buffer.byteLength === TOTAL_MEMORY); } updateGlobalBufferViews(); function getTotalMemory() { return TOTAL_MEMORY; } // Endianness check (note: assumes compiler arch was little-endian) HEAP32[0] = 0x63736d65; /* 'emsc' */ HEAP16[1] = 0x6373; if (HEAPU8[2] !== 0x73 || HEAPU8[3] !== 0x63) throw 'Runtime error: expected the system to be little-endian!'; Module['HEAP'] = HEAP; Module['buffer'] = buffer; Module['HEAP8'] = HEAP8; Module['HEAP16'] = HEAP16; Module['HEAP32'] = HEAP32; Module['HEAPU8'] = HEAPU8; Module['HEAPU16'] = HEAPU16; Module['HEAPU32'] = HEAPU32; Module['HEAPF32'] = HEAPF32; Module['HEAPF64'] = HEAPF64; function callRuntimeCallbacks(callbacks) { while(callbacks.length > 0) { var callback = callbacks.shift(); if (typeof callback == 'function') { callback(); continue; } var func = callback.func; if (typeof func === 'number') { if (callback.arg === undefined) { Module['dynCall_v'](func); } else { Module['dynCall_vi'](func, callback.arg); } } else { func(callback.arg === undefined ? null : callback.arg); } } } var __ATPRERUN__ = []; // functions called before the runtime is initialized var __ATINIT__ = []; // functions called during startup var __ATMAIN__ = []; // functions called when main() is to be run var __ATEXIT__ = []; // functions called during shutdown var __ATPOSTRUN__ = []; // functions called after the runtime has exited var runtimeInitialized = false; var runtimeExited = false; function preRun() { // compatibility - merge in anything from Module['preRun'] at this time if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; while (Module['preRun'].length) { addOnPreRun(Module['preRun'].shift()); } } callRuntimeCallbacks(__ATPRERUN__); } function ensureInitRuntime() { checkStackCookie(); if (runtimeInitialized) return; runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function preMain() { checkStackCookie(); callRuntimeCallbacks(__ATMAIN__); } function exitRuntime() { checkStackCookie(); callRuntimeCallbacks(__ATEXIT__); runtimeExited = true; } function postRun() { checkStackCookie(); // compatibility - merge in anything from Module['postRun'] at this time if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length) { addOnPostRun(Module['postRun'].shift()); } } callRuntimeCallbacks(__ATPOSTRUN__); } function addOnPreRun(cb) { __ATPRERUN__.unshift(cb); } Module["addOnPreRun"] = addOnPreRun; function addOnInit(cb) { __ATINIT__.unshift(cb); } Module["addOnInit"] = addOnInit; function addOnPreMain(cb) { __ATMAIN__.unshift(cb); } Module["addOnPreMain"] = addOnPreMain; function addOnExit(cb) { __ATEXIT__.unshift(cb); } Module["addOnExit"] = addOnExit; function addOnPostRun(cb) { __ATPOSTRUN__.unshift(cb); } Module["addOnPostRun"] = addOnPostRun; // Tools function intArrayFromString(stringy, dontAddNull, length /* optional */) { var len = length > 0 ? length : lengthBytesUTF8(stringy)+1; var u8array = new Array(len); var numBytesWritten = stringToUTF8Array(stringy, u8array, 0, u8array.length); if (dontAddNull) u8array.length = numBytesWritten; return u8array; } Module["intArrayFromString"] = intArrayFromString; function intArrayToString(array) { var ret = []; for (var i = 0; i < array.length; i++) { var chr = array[i]; if (chr > 0xFF) { assert(false, 'Character code ' + chr + ' (' + String.fromCharCode(chr) + ') at offset ' + i + ' not in 0x00-0xFF.'); chr &= 0xFF; } ret.push(String.fromCharCode(chr)); } return ret.join(''); } Module["intArrayToString"] = intArrayToString; // Deprecated: This function should not be called because it is unsafe and does not provide // a maximum length limit of how many bytes it is allowed to write. Prefer calling the // function stringToUTF8Array() instead, which takes in a maximum length that can be used // to be secure from out of bounds writes. function writeStringToMemory(string, buffer, dontAddNull) { Runtime.warnOnce('writeStringToMemory is deprecated and should not be called! Use stringToUTF8() instead!'); var lastChar, end; if (dontAddNull) { // stringToUTF8Array always appends null. If we don't want to do that, remember the // character that existed at the location where the null will be placed, and restore // that after the write (below). end = buffer + lengthBytesUTF8(string); lastChar = HEAP8[end]; } stringToUTF8(string, buffer, Infinity); if (dontAddNull) HEAP8[end] = lastChar; // Restore the value under the null character. } Module["writeStringToMemory"] = writeStringToMemory; function writeArrayToMemory(array, buffer) { assert(array.length >= 0, 'writeArrayToMemory array must have a length (should be an array or typed array)') HEAP8.set(array, buffer); } Module["writeArrayToMemory"] = writeArrayToMemory; function writeAsciiToMemory(str, buffer, dontAddNull) { for (var i = 0; i < str.length; ++i) { assert(str.charCodeAt(i) === str.charCodeAt(i)&0xff); HEAP8[((buffer++)>>0)]=str.charCodeAt(i); } // Null-terminate the pointer to the HEAP. if (!dontAddNull) HEAP8[((buffer)>>0)]=0; } Module["writeAsciiToMemory"] = writeAsciiToMemory; function unSign(value, bits, ignore) { if (value >= 0) { return value; } return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts : Math.pow(2, bits) + value; } function reSign(value, bits, ignore) { if (value <= 0) { return value; } var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32 : Math.pow(2, bits-1); if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that // but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors // TODO: In i64 mode 1, resign the two parts separately and safely value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts } return value; } // check for imul support, and also for correctness ( https://bugs.webkit.org/show_bug.cgi?id=126345 ) if (!Math['imul'] || Math['imul'](0xffffffff, 5) !== -5) Math['imul'] = function imul(a, b) { var ah = a >>> 16; var al = a & 0xffff; var bh = b >>> 16; var bl = b & 0xffff; return (al*bl + ((ah*bl + al*bh) << 16))|0; }; Math.imul = Math['imul']; if (!Math['fround']) { var froundBuffer = new Float32Array(1); Math['fround'] = function(x) { froundBuffer[0] = x; return froundBuffer[0] }; } Math.fround = Math['fround']; if (!Math['clz32']) Math['clz32'] = function(x) { x = x >>> 0; for (var i = 0; i < 32; i++) { if (x & (1 << (31 - i))) return i; } return 32; }; Math.clz32 = Math['clz32'] if (!Math['trunc']) Math['trunc'] = function(x) { return x < 0 ? Math.ceil(x) : Math.floor(x); }; Math.trunc = Math['trunc']; var Math_abs = Math.abs; var Math_cos = Math.cos; var Math_sin = Math.sin; var Math_tan = Math.tan; var Math_acos = Math.acos; var Math_asin = Math.asin; var Math_atan = Math.atan; var Math_atan2 = Math.atan2; var Math_exp = Math.exp; var Math_log = Math.log; var Math_sqrt = Math.sqrt; var Math_ceil = Math.ceil; var Math_floor = Math.floor; var Math_pow = Math.pow; var Math_imul = Math.imul; var Math_fround = Math.fround; var Math_round = Math.round; var Math_min = Math.min; var Math_clz32 = Math.clz32; var Math_trunc = Math.trunc; // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // PRE_RUN_ADDITIONS (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyWatcher = null; var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled var runDependencyTracking = {}; function getUniqueRunDependency(id) { var orig = id; while (1) { if (!runDependencyTracking[id]) return id; id = orig + Math.random(); } return id; } function addRunDependency(id) { runDependencies++; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(!runDependencyTracking[id]); runDependencyTracking[id] = 1; if (runDependencyWatcher === null && typeof setInterval !== 'undefined') { // Check for missing dependencies every few seconds runDependencyWatcher = setInterval(function() { if (ABORT) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; return; } var shown = false; for (var dep in runDependencyTracking) { if (!shown) { shown = true; Module.printErr('still waiting on run dependencies:'); } Module.printErr('dependency: ' + dep); } if (shown) { Module.printErr('(end of list)'); } }, 10000); } } else { Module.printErr('warning: run dependency added without ID'); } } Module["addRunDependency"] = addRunDependency; function removeRunDependency(id) { runDependencies--; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(runDependencyTracking[id]); delete runDependencyTracking[id]; } else { Module.printErr('warning: run dependency removed without ID'); } if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } if (dependenciesFulfilled) { var callback = dependenciesFulfilled; dependenciesFulfilled = null; callback(); // can add another dependenciesFulfilled } } } Module["removeRunDependency"] = removeRunDependency; Module["preloadedImages"] = {}; // maps url to image data Module["preloadedAudios"] = {}; // maps url to audio data var memoryInitializer = null; var /* show errors on likely calls to FS when it was not included */ FS = { error: function() { abort('Filesystem support (FS) was not included. The problem is that you are using files from JS, but files were not used from C/C++, so filesystem support was not auto-included. You can force-include filesystem support with -s FORCE_FILESYSTEM=1'); }, init: function() { FS.error() }, createDataFile: function() { FS.error() }, createPreloadedFile: function() { FS.error() }, createLazyFile: function() { FS.error() }, open: function() { FS.error() }, mkdev: function() { FS.error() }, registerDevice: function() { FS.error() }, analyzePath: function() { FS.error() }, loadFilesFromDB: function() { FS.error() }, ErrnoError: function ErrnoError() { FS.error() }, }; Module['FS_createDataFile'] = FS.createDataFile; Module['FS_createPreloadedFile'] = FS.createPreloadedFile; function integrateWasmJS(Module) { // wasm.js has several methods for creating the compiled code module here: // * 'native-wasm' : use native WebAssembly support in the browser // * 'interpret-s-expr': load s-expression code from a .wast and interpret // * 'interpret-binary': load binary wasm and interpret // * 'interpret-asm2wasm': load asm.js code, translate to wasm, and interpret // * 'asmjs': no wasm, just load the asm.js code and use that (good for testing) // The method can be set at compile time (BINARYEN_METHOD), or runtime by setting Module['wasmJSMethod']. // The method can be a comma-separated list, in which case, we will try the // options one by one. Some of them can fail gracefully, and then we can try // the next. // inputs var method = Module['wasmJSMethod'] || 'native-wasm'; Module['wasmJSMethod'] = method; var wasmTextFile = Module['wasmTextFile'] || 'test6.wast'; var wasmBinaryFile = Module['wasmBinaryFile'] || 'test6.wasm'; var asmjsCodeFile = Module['asmjsCodeFile'] || 'test6.temp.asm.js'; // utilities var wasmPageSize = 64*1024; var asm2wasmImports = { // special asm2wasm imports "f64-rem": function(x, y) { return x % y; }, "f64-to-int": function(x) { return x | 0; }, "i32s-div": function(x, y) { return ((x | 0) / (y | 0)) | 0; }, "i32u-div": function(x, y) { return ((x >>> 0) / (y >>> 0)) >>> 0; }, "i32s-rem": function(x, y) { return ((x | 0) % (y | 0)) | 0; }, "i32u-rem": function(x, y) { return ((x >>> 0) % (y >>> 0)) >>> 0; }, "debugger": function() { debugger; }, }; var info = { 'global': null, 'env': null, 'asm2wasm': asm2wasmImports, 'parent': Module // Module inside wasm-js.cpp refers to wasm-js.cpp; this allows access to the outside program. }; var exports = null; function lookupImport(mod, base) { var lookup = info; if (mod.indexOf('.') < 0) { lookup = (lookup || {})[mod]; } else { var parts = mod.split('.'); lookup = (lookup || {})[parts[0]]; lookup = (lookup || {})[parts[1]]; } if (base) { lookup = (lookup || {})[base]; } if (lookup === undefined) { abort('bad lookupImport to (' + mod + ').' + base); } return lookup; } function mergeMemory(newBuffer) { // The wasm instance creates its memory. But static init code might have written to // buffer already, including the mem init file, and we must copy it over in a proper merge. // TODO: avoid this copy, by avoiding such static init writes // TODO: in shorter term, just copy up to the last static init write var oldBuffer = Module['buffer']; if (newBuffer.byteLength < oldBuffer.byteLength) { Module['printErr']('the new buffer in mergeMemory is smaller than the previous one. in native wasm, we should grow memory here'); } var oldView = new Int8Array(oldBuffer); var newView = new Int8Array(newBuffer); // If we have a mem init file, do not trample it if (!memoryInitializer) { oldView.set(newView.subarray(Module['STATIC_BASE'], Module['STATIC_BASE'] + Module['STATIC_BUMP']), Module['STATIC_BASE']); } newView.set(oldView); updateGlobalBuffer(newBuffer); updateGlobalBufferViews(); } var WasmTypes = { none: 0, i32: 1, i64: 2, f32: 3, f64: 4 }; function fixImports(imports) { if (!0) return imports; var ret = {}; for (var i in imports) { var fixed = i; if (fixed[0] == '_') fixed = fixed.substr(1); ret[fixed] = imports[i]; } return ret; } function getBinary() { var binary; if (Module['wasmBinary']) { binary = Module['wasmBinary']; binary = new Uint8Array(binary); } else if (Module['readBinary']) { binary = Module['readBinary'](wasmBinaryFile); } else { throw "on the web, we need the wasm binary to be preloaded and set on Module['wasmBinary']. emcc.py will do that for you when generating HTML (but not JS)"; } return binary; } function getBinaryPromise() { // if we don't have the binary yet, and have the Fetch api, use that if (!Module['wasmBinary'] && typeof fetch === 'function') { return fetch(wasmBinaryFile).then(function(response) { return response['arrayBuffer']() }); } // Otherwise, getBinary should be able to get it synchronously return new Promise(function(resolve, reject) { resolve(getBinary()); }); } // do-method functions function doJustAsm(global, env, providedBuffer) { // if no Module.asm, or it's the method handler helper (see below), then apply // the asmjs if (typeof Module['asm'] !== 'function' || Module['asm'] === methodHandler) { if (!Module['asmPreload']) { // you can load the .asm.js file before this, to avoid this sync xhr and eval eval(Module['read'](asmjsCodeFile)); // set Module.asm } else { Module['asm'] = Module['asmPreload']; } } if (typeof Module['asm'] !== 'function') { Module['printErr']('asm evalling did not set the module properly'); return false; } return Module['asm'](global, env, providedBuffer); } function doNativeWasm(global, env, providedBuffer) { if (typeof WebAssembly !== 'object') { Module['printErr']('no native wasm support detected'); return false; } // prepare memory import if (!(Module['wasmMemory'] instanceof WebAssembly.Memory)) { Module['printErr']('no native wasm Memory in use'); return false; } env['memory'] = Module['wasmMemory']; // Load the wasm module and create an instance of using native support in the JS engine. info['global'] = { 'NaN': NaN, 'Infinity': Infinity }; info['global.Math'] = global.Math; info['env'] = env; // handle a generated wasm instance, receiving its exports and // performing other necessary setup function receiveInstance(instance) { exports = instance.exports; if (exports.memory) mergeMemory(exports.memory); Module['asm'] = exports; Module["usingWasm"] = true; removeRunDependency('wasm-instantiate'); } addRunDependency('wasm-instantiate'); // we can't run yet // User shell pages can write their own Module.instantiateWasm = function(imports, successCallback) callback // to manually instantiate the Wasm module themselves. This allows pages to run the instantiation parallel // to any other async startup actions they are performing. if (Module['instantiateWasm']) { try { return Module['instantiateWasm'](info, receiveInstance); } catch(e) { Module['printErr']('Module.instantiateWasm callback failed with error: ' + e); return false; } } Module['printErr']('asynchronously preparing wasm'); getBinaryPromise().then(function(binary) { return WebAssembly.instantiate(binary, info) }).then(function(output) { // receiveInstance() will swap in the exports (to Module.asm) so they can be called receiveInstance(output['instance']); }).catch(function(reason) { Module['printErr']('failed to asynchronously prepare wasm: ' + reason); Module['quit'](1, reason); }); return {}; // no exports yet; we'll fill them in later } function doWasmPolyfill(global, env, providedBuffer, method) { if (typeof WasmJS !== 'function') { Module['printErr']('WasmJS not detected - polyfill not bundled?'); return false; } // Use wasm.js to polyfill and execute code in a wasm interpreter. var wasmJS = WasmJS({}); // XXX don't be confused. Module here is in the outside program. wasmJS is the inner wasm-js.cpp. wasmJS['outside'] = Module; // Inside wasm-js.cpp, Module['outside'] reaches the outside module. // Information for the instance of the module. wasmJS['info'] = info; wasmJS['lookupImport'] = lookupImport; assert(providedBuffer === Module['buffer']); // we should not even need to pass it as a 3rd arg for wasm, but that's the asm.js way. info.global = global; info.env = env; // polyfill interpreter expects an ArrayBuffer assert(providedBuffer === Module['buffer']); env['memory'] = providedBuffer; assert(env['memory'] instanceof ArrayBuffer); wasmJS['providedTotalMemory'] = Module['buffer'].byteLength; // Prepare to generate wasm, using either asm2wasm or s-exprs var code; if (method === 'interpret-binary') { code = getBinary(); } else { code = Module['read'](method == 'interpret-asm2wasm' ? asmjsCodeFile : wasmTextFile); } var temp; if (method == 'interpret-asm2wasm') { temp = wasmJS['_malloc'](code.length + 1); wasmJS['writeAsciiToMemory'](code, temp); wasmJS['_load_asm2wasm'](temp); } else if (method === 'interpret-s-expr') { temp = wasmJS['_malloc'](code.length + 1); wasmJS['writeAsciiToMemory'](code, temp); wasmJS['_load_s_expr2wasm'](temp); } else if (method === 'interpret-binary') { temp = wasmJS['_malloc'](code.length); wasmJS['HEAPU8'].set(code, temp); wasmJS['_load_binary2wasm'](temp, code.length); } else { throw 'what? ' + method; } wasmJS['_free'](temp); wasmJS['_instantiate'](temp); if (Module['newBuffer']) { mergeMemory(Module['newBuffer']); Module['newBuffer'] = null; } exports = wasmJS['asmExports']; return exports; } // We may have a preloaded value in Module.asm, save it Module['asmPreload'] = Module['asm']; // Memory growth integration code Module['reallocBuffer'] = function(size) { var PAGE_MULTIPLE = Module["usingWasm"] ? WASM_PAGE_SIZE : ASMJS_PAGE_SIZE; // In wasm, heap size must be a multiple of 64KB. In asm.js, they need to be multiples of 16MB. size = alignUp(size, PAGE_MULTIPLE); // round up to wasm page size var old = Module['buffer']; var oldSize = old.byteLength; if (Module["usingWasm"]) { try { var result = Module['wasmMemory'].grow((size - oldSize) / wasmPageSize); // .grow() takes a delta compared to the previous size if (result !== (-1 | 0)) { // success in native wasm memory growth, get the buffer from the memory return Module['buffer'] = Module['wasmMemory'].buffer; } else { return null; } } catch(e) { console.error('Module.reallocBuffer: Attempted to grow from ' + oldSize + ' bytes to ' + size + ' bytes, but got error: ' + e); return null; } } else { exports['__growWasmMemory']((size - oldSize) / wasmPageSize); // tiny wasm method that just does grow_memory // in interpreter, we replace Module.buffer if we allocate return Module['buffer'] !== old ? Module['buffer'] : null; // if it was reallocated, it changed } }; // Provide an "asm.js function" for the application, called to "link" the asm.js module. We instantiate // the wasm module at that time, and it receives imports and provides exports and so forth, the app // doesn't need to care that it is wasm or olyfilled wasm or asm.js. Module['asm'] = function(global, env, providedBuffer) { global = fixImports(global); env = fixImports(env); // import table if (!env['table']) { var TABLE_SIZE = Module['wasmTableSize']; if (TABLE_SIZE === undefined) TABLE_SIZE = 1024; // works in binaryen interpreter at least var MAX_TABLE_SIZE = Module['wasmMaxTableSize']; if (typeof WebAssembly === 'object' && typeof WebAssembly.Table === 'function') { if (MAX_TABLE_SIZE !== undefined) { env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, 'maximum': MAX_TABLE_SIZE, 'element': 'anyfunc' }); } else { env['table'] = new WebAssembly.Table({ 'initial': TABLE_SIZE, element: 'anyfunc' }); } } else { env['table'] = new Array(TABLE_SIZE); // works in binaryen interpreter at least } Module['wasmTable'] = env['table']; } if (!env['memoryBase']) { env['memoryBase'] = Module['STATIC_BASE']; // tell the memory segments where to place themselves } if (!env['tableBase']) { env['tableBase'] = 0; // table starts at 0 by default, in dynamic linking this will change } // try the methods. each should return the exports if it succeeded var exports; var methods = method.split(','); for (var i = 0; i < methods.length; i++) { var curr = methods[i]; Module['printErr']('trying binaryen method: ' + curr); if (curr === 'native-wasm') { if (exports = doNativeWasm(global, env, providedBuffer)) break; } else if (curr === 'asmjs') { if (exports = doJustAsm(global, env, providedBuffer)) break; } else if (curr === 'interpret-asm2wasm' || curr === 'interpret-s-expr' || curr === 'interpret-binary') { if (exports = doWasmPolyfill(global, env, providedBuffer, curr)) break; } else { throw 'bad method: ' + curr; } } if (!exports) throw 'no binaryen method succeeded. consider enabling more options, like interpreting, if you want that: https://github.com/kripken/emscripten/wiki/WebAssembly#binaryen-methods'; Module['printErr']('binaryen method succeeded.'); return exports; }; var methodHandler = Module['asm']; // note our method handler, as we may modify Module['asm'] later } integrateWasmJS(Module); // === Body === var ASM_CONSTS = []; STATIC_BASE = Runtime.GLOBAL_BASE; STATICTOP = STATIC_BASE + 1840; /* global initializers */ __ATINIT__.push(); memoryInitializer = Module["wasmJSMethod"].indexOf("asmjs") >= 0 || Module["wasmJSMethod"].indexOf("interpret-asm2wasm") >= 0 ? "test6.js.mem" : null; var STATIC_BUMP = 1840; Module["STATIC_BASE"] = STATIC_BASE; Module["STATIC_BUMP"] = STATIC_BUMP; /* no memory initializer */ var tempDoublePtr = STATICTOP; STATICTOP += 16; assert(tempDoublePtr % 8 == 0); function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; } function copyTempDouble(ptr) { HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; HEAP8[tempDoublePtr+4] = HEAP8[ptr+4]; HEAP8[tempDoublePtr+5] = HEAP8[ptr+5]; HEAP8[tempDoublePtr+6] = HEAP8[ptr+6]; HEAP8[tempDoublePtr+7] = HEAP8[ptr+7]; } // {{PRE_LIBRARY}} function _abort() { Module['abort'](); } function ___setErrNo(value) { if (Module['___errno_location']) HEAP32[((Module['___errno_location']())>>2)]=value; else Module.printErr('failed to set errno from JS'); return value; } Module["_sbrk"] = _sbrk; DYNAMICTOP_PTR = allocate(1, "i32", ALLOC_STATIC); STACK_BASE = STACKTOP = Runtime.alignMemory(STATICTOP); STACK_MAX = STACK_BASE + TOTAL_STACK; DYNAMIC_BASE = Runtime.alignMemory(STACK_MAX); HEAP32[DYNAMICTOP_PTR>>2] = DYNAMIC_BASE; staticSealed = true; // seal the static portion of memory assert(DYNAMIC_BASE < TOTAL_MEMORY, "TOTAL_MEMORY not big enough for stack"); Module['wasmTableSize'] = 0; Module['wasmMaxTableSize'] = 0; Module.asmGlobalArg = { "Math": Math, "Int8Array": Int8Array, "Int16Array": Int16Array, "Int32Array": Int32Array, "Uint8Array": Uint8Array, "Uint16Array": Uint16Array, "Uint32Array": Uint32Array, "Float32Array": Float32Array, "Float64Array": Float64Array, "NaN": NaN, "Infinity": Infinity }; Module.asmLibraryArg = { "abort": abort, "assert": assert, "enlargeMemory": enlargeMemory, "getTotalMemory": getTotalMemory, "abortOnCannotGrowMemory": abortOnCannotGrowMemory, "abortStackOverflow": abortStackOverflow, "_abort": _abort, "___setErrNo": ___setErrNo, "DYNAMICTOP_PTR": DYNAMICTOP_PTR, "tempDoublePtr": tempDoublePtr, "ABORT": ABORT, "STACKTOP": STACKTOP, "STACK_MAX": STACK_MAX }; // EMSCRIPTEN_START_ASM var asm =Module["asm"]// EMSCRIPTEN_END_ASM (Module.asmGlobalArg, Module.asmLibraryArg, buffer); var real__sbrk = asm["_sbrk"]; asm["_sbrk"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real__sbrk.apply(null, arguments); }; var real_getTempRet0 = asm["getTempRet0"]; asm["getTempRet0"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real_getTempRet0.apply(null, arguments); }; var real__free = asm["_free"]; asm["_free"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real__free.apply(null, arguments); }; var real_setTempRet0 = asm["setTempRet0"]; asm["setTempRet0"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real_setTempRet0.apply(null, arguments); }; var real_establishStackSpace = asm["establishStackSpace"]; asm["establishStackSpace"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real_establishStackSpace.apply(null, arguments); }; var real_stackRestore = asm["stackRestore"]; asm["stackRestore"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real_stackRestore.apply(null, arguments); }; var real__malloc = asm["_malloc"]; asm["_malloc"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real__malloc.apply(null, arguments); }; var real__emscripten_get_global_libc = asm["_emscripten_get_global_libc"]; asm["_emscripten_get_global_libc"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real__emscripten_get_global_libc.apply(null, arguments); }; var real_stackAlloc = asm["stackAlloc"]; asm["stackAlloc"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real_stackAlloc.apply(null, arguments); }; var real_setThrew = asm["setThrew"]; asm["setThrew"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real_setThrew.apply(null, arguments); }; var real__hello_world = asm["_hello_world"]; asm["_hello_world"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real__hello_world.apply(null, arguments); }; var real_stackSave = asm["stackSave"]; asm["stackSave"] = function() { assert(runtimeInitialized, 'you need to wait for the runtime to be ready (e.g. wait for main() to be called)'); assert(!runtimeExited, 'the runtime was exited (use NO_EXIT_RUNTIME to keep it alive after main() exits)'); return real_stackSave.apply(null, arguments); }; Module["asm"] = asm; var _sbrk = Module["_sbrk"] = function() { return Module["asm"]["_sbrk"].apply(null, arguments) }; var getTempRet0 = Module["getTempRet0"] = function() { return Module["asm"]["getTempRet0"].apply(null, arguments) }; var _free = Module["_free"] = function() { return Module["asm"]["_free"].apply(null, arguments) }; var runPostSets = Module["runPostSets"] = function() { return Module["asm"]["runPostSets"].apply(null, arguments) }; var setTempRet0 = Module["setTempRet0"] = function() { return Module["asm"]["setTempRet0"].apply(null, arguments) }; var establishStackSpace = Module["establishStackSpace"] = function() { return Module["asm"]["establishStackSpace"].apply(null, arguments) }; var stackRestore = Module["stackRestore"] = function() { return Module["asm"]["stackRestore"].apply(null, arguments) }; var _malloc = Module["_malloc"] = function() { return Module["asm"]["_malloc"].apply(null, arguments) }; var _emscripten_get_global_libc = Module["_emscripten_get_global_libc"] = function() { return Module["asm"]["_emscripten_get_global_libc"].apply(null, arguments) }; var stackAlloc = Module["stackAlloc"] = function() { return Module["asm"]["stackAlloc"].apply(null, arguments) }; var setThrew = Module["setThrew"] = function() { return Module["asm"]["setThrew"].apply(null, arguments) }; var _hello_world = Module["_hello_world"] = function() { return Module["asm"]["_hello_world"].apply(null, arguments) }; var stackSave = Module["stackSave"] = function() { return Module["asm"]["stackSave"].apply(null, arguments) }; ; Runtime.stackAlloc = Module['stackAlloc']; Runtime.stackSave = Module['stackSave']; Runtime.stackRestore = Module['stackRestore']; Runtime.establishStackSpace = Module['establishStackSpace']; Runtime.setTempRet0 = Module['setTempRet0']; Runtime.getTempRet0 = Module['getTempRet0']; // === Auto-generated postamble setup entry stuff === Module['asm'] = asm; if (memoryInitializer) { if (typeof Module['locateFile'] === 'function') { memoryInitializer = Module['locateFile'](memoryInitializer); } else if (Module['memoryInitializerPrefixURL']) { memoryInitializer = Module['memoryInitializerPrefixURL'] + memoryInitializer; } if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) { var data = Module['readBinary'](memoryInitializer); HEAPU8.set(data, Runtime.GLOBAL_BASE); } else { addRunDependency('memory initializer'); var applyMemoryInitializer = function(data) { if (data.byteLength) data = new Uint8Array(data); for (var i = 0; i < data.length; i++) { assert(HEAPU8[Runtime.GLOBAL_BASE + i] === 0, "area for memory initializer should not have been touched before it's loaded"); } HEAPU8.set(data, Runtime.GLOBAL_BASE); // Delete the typed array that contains the large blob of the memory initializer request response so that // we won't keep unnecessary memory lying around. However, keep the XHR object itself alive so that e.g. // its .status field can still be accessed later. if (Module['memoryInitializerRequest']) delete Module['memoryInitializerRequest'].response; removeRunDependency('memory initializer'); } function doBrowserLoad() { Module['readAsync'](memoryInitializer, applyMemoryInitializer, function() { throw 'could not load memory initializer ' + memoryInitializer; }); } if (Module['memoryInitializerRequest']) { // a network request has already been created, just use that function useRequest() { var request = Module['memoryInitializerRequest']; if (request.status !== 200 && request.status !== 0) { // If you see this warning, the issue may be that you are using locateFile or memoryInitializerPrefixURL, and defining them in JS. That // means that the HTML file doesn't know about them, and when it tries to create the mem init request early, does it to the wrong place. // Look in your browser's devtools network console to see what's going on. console.warn('a problem seems to have happened with Module.memoryInitializerRequest, status: ' + request.status + ', retrying ' + memoryInitializer); doBrowserLoad(); return; } applyMemoryInitializer(request.response); } if (Module['memoryInitializerRequest'].response) { setTimeout(useRequest, 0); // it's already here; but, apply it asynchronously } else { Module['memoryInitializerRequest'].addEventListener('load', useRequest); // wait for it } } else { // fetch it from the network ourselves doBrowserLoad(); } } } function ExitStatus(status) { this.name = "ExitStatus"; this.message = "Program terminated with exit(" + status + ")"; this.status = status; }; ExitStatus.prototype = new Error(); ExitStatus.prototype.constructor = ExitStatus; var initialStackTop; var preloadStartTime = null; var calledMain = false; dependenciesFulfilled = function runCaller() { // If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false) if (!Module['calledRun']) run(); if (!Module['calledRun']) dependenciesFulfilled = runCaller; // try this again later, after new deps are fulfilled } Module['callMain'] = Module.callMain = function callMain(args) { assert(runDependencies == 0, 'cannot call main when async dependencies remain! (listen on __ATMAIN__)'); assert(__ATPRERUN__.length == 0, 'cannot call main when preRun functions remain to be called'); args = args || []; ensureInitRuntime(); var argc = args.length+1; function pad() { for (var i = 0; i < 4-1; i++) { argv.push(0); } } var argv = [allocate(intArrayFromString(Module['thisProgram']), 'i8', ALLOC_NORMAL) ]; pad(); for (var i = 0; i < argc-1; i = i + 1) { argv.push(allocate(intArrayFromString(args[i]), 'i8', ALLOC_NORMAL)); pad(); } argv.push(0); argv = allocate(argv, 'i32', ALLOC_NORMAL); try { var ret = Module['_main'](argc, argv, 0); // if we're not running an evented main loop, it's time to exit exit(ret, /* implicit = */ true); } catch(e) { if (e instanceof ExitStatus) { // exit() throws this once it's done to make sure execution // has been stopped completely return; } else if (e == 'SimulateInfiniteLoop') { // running an evented main loop, don't immediately exit Module['noExitRuntime'] = true; return; } else { var toLog = e; if (e && typeof e === 'object' && e.stack) { toLog = [e, e.stack]; } Module.printErr('exception thrown: ' + toLog); Module['quit'](1, e); } } finally { calledMain = true; } } function run(args) { args = args || Module['arguments']; if (preloadStartTime === null) preloadStartTime = Date.now(); if (runDependencies > 0) { Module.printErr('run() called, but dependencies remain, so not running'); return; } writeStackCookie(); preRun(); if (runDependencies > 0) return; // a preRun added a dependency, run will be called later if (Module['calledRun']) return; // run may have just been called through dependencies being fulfilled just in this very frame function doRun() { if (Module['calledRun']) return; // run may have just been called while the async setStatus time below was happening Module['calledRun'] = true; if (ABORT) return; ensureInitRuntime(); preMain(); if (ENVIRONMENT_IS_WEB && preloadStartTime !== null) { Module.printErr('pre-main prep time: ' + (Date.now() - preloadStartTime) + ' ms'); } if (Module['onRuntimeInitialized']) Module['onRuntimeInitialized'](); if (Module['_main'] && shouldRunNow) Module['callMain'](args); postRun(); } if (Module['setStatus']) { Module['setStatus']('Running...'); setTimeout(function() { setTimeout(function() { Module['setStatus'](''); }, 1); doRun(); }, 1); } else { doRun(); } checkStackCookie(); } Module['run'] = Module.run = run; function exit(status, implicit) { if (implicit && Module['noExitRuntime']) { Module.printErr('exit(' + status + ') implicitly called by end of main(), but noExitRuntime, so not exiting the runtime (you can use emscripten_force_exit, if you want to force a true shutdown)'); return; } if (Module['noExitRuntime']) { Module.printErr('exit(' + status + ') called, but noExitRuntime, so halting execution but not exiting the runtime or preventing further async execution (you can use emscripten_force_exit, if you want to force a true shutdown)'); } else { ABORT = true; EXITSTATUS = status; STACKTOP = initialStackTop; exitRuntime(); if (Module['onExit']) Module['onExit'](status); } if (ENVIRONMENT_IS_NODE) { process['exit'](status); } Module['quit'](status, new ExitStatus(status)); } Module['exit'] = Module.exit = exit; var abortDecorators = []; function abort(what) { if (what !== undefined) { Module.print(what); Module.printErr(what); what = JSON.stringify(what) } else { what = ''; } ABORT = true; EXITSTATUS = 1; var extra = ''; var output = 'abort(' + what + ') at ' + stackTrace() + extra; if (abortDecorators) { abortDecorators.forEach(function(decorator) { output = decorator(output, what); }); } throw output; } Module['abort'] = Module.abort = abort; // {{PRE_RUN_ADDITIONS}} if (Module['preInit']) { if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']]; while (Module['preInit'].length > 0) { Module['preInit'].pop()(); } } // shouldRunNow refers to calling main(), not run(). var shouldRunNow = true; if (Module['noInitialRun']) { shouldRunNow = false; } Module["noExitRuntime"] = true; run(); // {{POST_RUN_ADDITIONS}} // {{MODULE_ADDITIONS}}