use std::mem; use std::ops; use std::{u32, usize}; use std::fmt; use std::iter::repeat; use parity_wasm::elements::Local; use {Error, Trap, TrapKind, Signature}; use module::ModuleRef; use func::{FuncRef, FuncInstance, FuncInstanceInternal}; use value::{ RuntimeValue, FromRuntimeValue, WrapInto, TryTruncateInto, ExtendInto, ArithmeticOps, Integer, Float, LittleEndianConvert, TransmuteInto, }; use host::Externals; use common::{DEFAULT_MEMORY_INDEX, DEFAULT_TABLE_INDEX}; use common::stack::StackWithLimit; use memory_units::Pages; use nan_preserving_float::{F32, F64}; use isa; /// Maximum number of entries in value stack. pub const DEFAULT_VALUE_STACK_LIMIT: usize = (512 * 1024) / ::std::mem::size_of::(); // TODO: Make these parameters changeble. pub const DEFAULT_CALL_STACK_LIMIT: usize = 16 * 1024; /// Interpreter action to execute after executing instruction. pub enum InstructionOutcome { /// Continue with next instruction. RunNextInstruction, /// Branch to an instruction at the given position. Branch(isa::Target), /// Execute function call. ExecuteCall(FuncRef), /// Return from current function block. Return(u32, u8), } /// Function run result. enum RunResult { /// Function has returned. Return, /// Function is calling other function. NestedCall(FuncRef), } /// Function interpreter. pub struct Interpreter<'a, E: Externals + 'a> { externals: &'a mut E, value_stack: ValueStack, } impl<'a, E: Externals> Interpreter<'a, E> { pub fn new(externals: &'a mut E) -> Interpreter<'a, E> { let value_stack = ValueStack::with_limit(DEFAULT_VALUE_STACK_LIMIT); Interpreter { externals, value_stack, } } pub fn start_execution(&mut self, func: &FuncRef, args: &[RuntimeValue]) -> Result, Trap> { for arg in args { self.value_stack .push(*arg) .map_err( // There is not enough space for pushing initial arguments. // Weird, but bail out anyway. |_| Trap::from(TrapKind::StackOverflow) )?; } let initial_frame = FunctionContext::new(func.clone()); let mut call_stack = Vec::new(); call_stack.push(initial_frame); self.run_interpreter_loop(&mut call_stack)?; Ok(func.signature().return_type().map(|_vt| { let return_value = self.value_stack .pop(); return_value })) } fn run_interpreter_loop(&mut self, call_stack: &mut Vec) -> Result<(), Trap> { loop { let mut function_context = call_stack .pop() .expect("on loop entry - not empty; on loop continue - checking for emptiness; qed"); let function_ref = function_context.function.clone(); let function_body = function_ref .body() .expect( "Host functions checked in function_return below; Internal functions always have a body; qed" ); if !function_context.is_initialized() { // Initialize stack frame for the function call. function_context.initialize(&function_body.locals, &mut self.value_stack)?; } let function_return = self.do_run_function( &mut function_context, &function_body.code.code, ).map_err(Trap::new)?; match function_return { RunResult::Return => { if call_stack.last().is_none() { // This was the last frame in the call stack. This means we // are done executing. return Ok(()); } }, RunResult::NestedCall(nested_func) => { if call_stack.len() + 1 >= DEFAULT_CALL_STACK_LIMIT { return Err(TrapKind::StackOverflow.into()); } match *nested_func.as_internal() { FuncInstanceInternal::Internal { .. } => { let nested_context = function_context.nested(nested_func.clone()).map_err(Trap::new)?; call_stack.push(function_context); call_stack.push(nested_context); }, FuncInstanceInternal::Host { ref signature, .. } => { let args = prepare_function_args(signature, &mut self.value_stack); let return_val = FuncInstance::invoke(&nested_func, &args, self.externals)?; // Check if `return_val` matches the signature. let value_ty = return_val.clone().map(|val| val.value_type()); let expected_ty = nested_func.signature().return_type(); if value_ty != expected_ty { return Err(TrapKind::UnexpectedSignature.into()); } if let Some(return_val) = return_val { self.value_stack.push(return_val).map_err(Trap::new)?; } call_stack.push(function_context); } } }, } } } fn do_run_function(&mut self, function_context: &mut FunctionContext, instructions: &[isa::Instruction]) -> Result { loop { let instruction = &instructions[function_context.position]; match self.run_instruction(function_context, instruction)? { InstructionOutcome::RunNextInstruction => function_context.position += 1, InstructionOutcome::Branch(target) => { function_context.position = target.dst_pc as usize; self.value_stack.drop_keep(target.drop, target.keep); }, InstructionOutcome::ExecuteCall(func_ref) => { function_context.position += 1; return Ok(RunResult::NestedCall(func_ref)); }, InstructionOutcome::Return(drop, keep) => { self.value_stack.drop_keep(drop, keep); break; }, } } Ok(RunResult::Return) } fn run_instruction(&mut self, context: &mut FunctionContext, instruction: &isa::Instruction) -> Result { match instruction { &isa::Instruction::Unreachable => self.run_unreachable(context), &isa::Instruction::Br(ref target) => self.run_br(context, target.clone()), &isa::Instruction::BrIfEqz(ref target) => self.run_br_eqz(target.clone()), &isa::Instruction::BrIfNez(ref target) => self.run_br_nez(target.clone()), &isa::Instruction::BrTable(ref targets) => self.run_br_table(targets), &isa::Instruction::Return { drop, keep } => self.run_return(drop, keep), &isa::Instruction::Call(index) => self.run_call(context, index), &isa::Instruction::CallIndirect(index) => self.run_call_indirect(context, index), &isa::Instruction::Drop => self.run_drop(), &isa::Instruction::Select => self.run_select(), &isa::Instruction::GetLocal(depth) => self.run_get_local(depth), &isa::Instruction::SetLocal(depth) => self.run_set_local(depth), &isa::Instruction::TeeLocal(depth) => self.run_tee_local(depth), &isa::Instruction::GetGlobal(index) => self.run_get_global(context, index), &isa::Instruction::SetGlobal(index) => self.run_set_global(context, index), &isa::Instruction::I32Load(offset) => self.run_load::(context, offset), &isa::Instruction::I64Load(offset) => self.run_load::(context, offset), &isa::Instruction::F32Load(offset) => self.run_load::(context, offset), &isa::Instruction::F64Load(offset) => self.run_load::(context, offset), &isa::Instruction::I32Load8S(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I32Load8U(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I32Load16S(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I32Load16U(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I64Load8S(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I64Load8U(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I64Load16S(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I64Load16U(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I64Load32S(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I64Load32U(offset) => self.run_load_extend::(context, offset), &isa::Instruction::I32Store(offset) => self.run_store::(context, offset), &isa::Instruction::I64Store(offset) => self.run_store::(context, offset), &isa::Instruction::F32Store(offset) => self.run_store::(context, offset), &isa::Instruction::F64Store(offset) => self.run_store::(context, offset), &isa::Instruction::I32Store8(offset) => self.run_store_wrap::(context, offset), &isa::Instruction::I32Store16(offset) => self.run_store_wrap::(context, offset), &isa::Instruction::I64Store8(offset) => self.run_store_wrap::(context, offset), &isa::Instruction::I64Store16(offset) => self.run_store_wrap::(context, offset), &isa::Instruction::I64Store32(offset) => self.run_store_wrap::(context, offset), &isa::Instruction::CurrentMemory => self.run_current_memory(context), &isa::Instruction::GrowMemory => self.run_grow_memory(context), &isa::Instruction::I32Const(val) => self.run_const(val.into()), &isa::Instruction::I64Const(val) => self.run_const(val.into()), &isa::Instruction::F32Const(val) => self.run_const(RuntimeValue::decode_f32(val)), &isa::Instruction::F64Const(val) => self.run_const(RuntimeValue::decode_f64(val)), &isa::Instruction::I32Eqz => self.run_eqz::(), &isa::Instruction::I32Eq => self.run_eq::(), &isa::Instruction::I32Ne => self.run_ne::(), &isa::Instruction::I32LtS => self.run_lt::(), &isa::Instruction::I32LtU => self.run_lt::(), &isa::Instruction::I32GtS => self.run_gt::(), &isa::Instruction::I32GtU => self.run_gt::(), &isa::Instruction::I32LeS => self.run_lte::(), &isa::Instruction::I32LeU => self.run_lte::(), &isa::Instruction::I32GeS => self.run_gte::(), &isa::Instruction::I32GeU => self.run_gte::(), &isa::Instruction::I64Eqz => self.run_eqz::(), &isa::Instruction::I64Eq => self.run_eq::(), &isa::Instruction::I64Ne => self.run_ne::(), &isa::Instruction::I64LtS => self.run_lt::(), &isa::Instruction::I64LtU => self.run_lt::(), &isa::Instruction::I64GtS => self.run_gt::(), &isa::Instruction::I64GtU => self.run_gt::(), &isa::Instruction::I64LeS => self.run_lte::(), &isa::Instruction::I64LeU => self.run_lte::(), &isa::Instruction::I64GeS => self.run_gte::(), &isa::Instruction::I64GeU => self.run_gte::(), &isa::Instruction::F32Eq => self.run_eq::(), &isa::Instruction::F32Ne => self.run_ne::(), &isa::Instruction::F32Lt => self.run_lt::(), &isa::Instruction::F32Gt => self.run_gt::(), &isa::Instruction::F32Le => self.run_lte::(), &isa::Instruction::F32Ge => self.run_gte::(), &isa::Instruction::F64Eq => self.run_eq::(), &isa::Instruction::F64Ne => self.run_ne::(), &isa::Instruction::F64Lt => self.run_lt::(), &isa::Instruction::F64Gt => self.run_gt::(), &isa::Instruction::F64Le => self.run_lte::(), &isa::Instruction::F64Ge => self.run_gte::(), &isa::Instruction::I32Clz => self.run_clz::(), &isa::Instruction::I32Ctz => self.run_ctz::(), &isa::Instruction::I32Popcnt => self.run_popcnt::(), &isa::Instruction::I32Add => self.run_add::(), &isa::Instruction::I32Sub => self.run_sub::(), &isa::Instruction::I32Mul => self.run_mul::(), &isa::Instruction::I32DivS => self.run_div::(), &isa::Instruction::I32DivU => self.run_div::(), &isa::Instruction::I32RemS => self.run_rem::(), &isa::Instruction::I32RemU => self.run_rem::(), &isa::Instruction::I32And => self.run_and::(), &isa::Instruction::I32Or => self.run_or::(), &isa::Instruction::I32Xor => self.run_xor::(), &isa::Instruction::I32Shl => self.run_shl::(0x1F), &isa::Instruction::I32ShrS => self.run_shr::(0x1F), &isa::Instruction::I32ShrU => self.run_shr::(0x1F), &isa::Instruction::I32Rotl => self.run_rotl::(), &isa::Instruction::I32Rotr => self.run_rotr::(), &isa::Instruction::I64Clz => self.run_clz::(), &isa::Instruction::I64Ctz => self.run_ctz::(), &isa::Instruction::I64Popcnt => self.run_popcnt::(), &isa::Instruction::I64Add => self.run_add::(), &isa::Instruction::I64Sub => self.run_sub::(), &isa::Instruction::I64Mul => self.run_mul::(), &isa::Instruction::I64DivS => self.run_div::(), &isa::Instruction::I64DivU => self.run_div::(), &isa::Instruction::I64RemS => self.run_rem::(), &isa::Instruction::I64RemU => self.run_rem::(), &isa::Instruction::I64And => self.run_and::(), &isa::Instruction::I64Or => self.run_or::(), &isa::Instruction::I64Xor => self.run_xor::(), &isa::Instruction::I64Shl => self.run_shl::(0x3F), &isa::Instruction::I64ShrS => self.run_shr::(0x3F), &isa::Instruction::I64ShrU => self.run_shr::(0x3F), &isa::Instruction::I64Rotl => self.run_rotl::(), &isa::Instruction::I64Rotr => self.run_rotr::(), &isa::Instruction::F32Abs => self.run_abs::(), &isa::Instruction::F32Neg => self.run_neg::(), &isa::Instruction::F32Ceil => self.run_ceil::(), &isa::Instruction::F32Floor => self.run_floor::(), &isa::Instruction::F32Trunc => self.run_trunc::(), &isa::Instruction::F32Nearest => self.run_nearest::(), &isa::Instruction::F32Sqrt => self.run_sqrt::(), &isa::Instruction::F32Add => self.run_add::(), &isa::Instruction::F32Sub => self.run_sub::(), &isa::Instruction::F32Mul => self.run_mul::(), &isa::Instruction::F32Div => self.run_div::(), &isa::Instruction::F32Min => self.run_min::(), &isa::Instruction::F32Max => self.run_max::(), &isa::Instruction::F32Copysign => self.run_copysign::(), &isa::Instruction::F64Abs => self.run_abs::(), &isa::Instruction::F64Neg => self.run_neg::(), &isa::Instruction::F64Ceil => self.run_ceil::(), &isa::Instruction::F64Floor => self.run_floor::(), &isa::Instruction::F64Trunc => self.run_trunc::(), &isa::Instruction::F64Nearest => self.run_nearest::(), &isa::Instruction::F64Sqrt => self.run_sqrt::(), &isa::Instruction::F64Add => self.run_add::(), &isa::Instruction::F64Sub => self.run_sub::(), &isa::Instruction::F64Mul => self.run_mul::(), &isa::Instruction::F64Div => self.run_div::(), &isa::Instruction::F64Min => self.run_min::(), &isa::Instruction::F64Max => self.run_max::(), &isa::Instruction::F64Copysign => self.run_copysign::(), &isa::Instruction::I32WrapI64 => self.run_wrap::(), &isa::Instruction::I32TruncSF32 => self.run_trunc_to_int::(), &isa::Instruction::I32TruncUF32 => self.run_trunc_to_int::(), &isa::Instruction::I32TruncSF64 => self.run_trunc_to_int::(), &isa::Instruction::I32TruncUF64 => self.run_trunc_to_int::(), &isa::Instruction::I64ExtendSI32 => self.run_extend::(), &isa::Instruction::I64ExtendUI32 => self.run_extend::(), &isa::Instruction::I64TruncSF32 => self.run_trunc_to_int::(), &isa::Instruction::I64TruncUF32 => self.run_trunc_to_int::(), &isa::Instruction::I64TruncSF64 => self.run_trunc_to_int::(), &isa::Instruction::I64TruncUF64 => self.run_trunc_to_int::(), &isa::Instruction::F32ConvertSI32 => self.run_extend::(), &isa::Instruction::F32ConvertUI32 => self.run_extend::(), &isa::Instruction::F32ConvertSI64 => self.run_wrap::(), &isa::Instruction::F32ConvertUI64 => self.run_wrap::(), &isa::Instruction::F32DemoteF64 => self.run_wrap::(), &isa::Instruction::F64ConvertSI32 => self.run_extend::(), &isa::Instruction::F64ConvertUI32 => self.run_extend::(), &isa::Instruction::F64ConvertSI64 => self.run_extend::(), &isa::Instruction::F64ConvertUI64 => self.run_extend::(), &isa::Instruction::F64PromoteF32 => self.run_extend::(), &isa::Instruction::I32ReinterpretF32 => self.run_reinterpret::(), &isa::Instruction::I64ReinterpretF64 => self.run_reinterpret::(), &isa::Instruction::F32ReinterpretI32 => self.run_reinterpret::(), &isa::Instruction::F64ReinterpretI64 => self.run_reinterpret::(), } } fn run_unreachable(&mut self, _context: &mut FunctionContext) -> Result { Err(TrapKind::Unreachable) } fn run_br(&mut self, _context: &mut FunctionContext, target: isa::Target) -> Result { Ok(InstructionOutcome::Branch(target)) } fn run_br_nez(&mut self, target: isa::Target) -> Result { let condition = self.value_stack.pop_as(); if condition { Ok(InstructionOutcome::Branch(target)) } else { Ok(InstructionOutcome::RunNextInstruction) } } fn run_br_eqz(&mut self, target: isa::Target) -> Result { let condition = self.value_stack.pop_as(); if condition { Ok(InstructionOutcome::RunNextInstruction) } else { Ok(InstructionOutcome::Branch(target)) } } fn run_br_table(&mut self, table: &[isa::Target]) -> Result { let index: u32 = self.value_stack .pop_as(); let dst = if (index as usize) < table.len() - 1 { table[index as usize].clone() } else { let len = table.len(); table[len - 1].clone() }; Ok(InstructionOutcome::Branch(dst)) } fn run_return(&mut self, drop: u32, keep: u8) -> Result { Ok(InstructionOutcome::Return(drop, keep)) } fn run_call( &mut self, context: &mut FunctionContext, func_idx: u32, ) -> Result { let func = context .module() .func_by_index(func_idx) .expect("Due to validation func should exists"); Ok(InstructionOutcome::ExecuteCall(func)) } fn run_call_indirect( &mut self, context: &mut FunctionContext, signature_idx: u32, ) -> Result { let table_func_idx: u32 = self .value_stack .pop_as(); let table = context .module() .table_by_index(DEFAULT_TABLE_INDEX) .expect("Due to validation table should exists"); let func_ref = table.get(table_func_idx) .map_err(|_| TrapKind::TableAccessOutOfBounds)? .ok_or_else(|| TrapKind::ElemUninitialized)?; { let actual_function_type = func_ref.signature(); let required_function_type = context .module() .signature_by_index(signature_idx) .expect("Due to validation type should exists"); if &*required_function_type != actual_function_type { return Err(TrapKind::UnexpectedSignature); } } Ok(InstructionOutcome::ExecuteCall(func_ref)) } fn run_drop(&mut self) -> Result { let _ = self .value_stack .pop(); Ok(InstructionOutcome::RunNextInstruction) } fn run_select(&mut self) -> Result { let (left, mid, right) = self .value_stack .pop_triple(); let condition = right .try_into() .expect("Due to validation stack top should be I32"); let val = if condition { left } else { mid }; self.value_stack.push(val)?; Ok(InstructionOutcome::RunNextInstruction) } fn run_get_local(&mut self, index: u32) -> Result { let val = *self.value_stack.pick_mut(index as usize); self.value_stack.push(val)?; Ok(InstructionOutcome::RunNextInstruction) } fn run_set_local(&mut self, index: u32) -> Result { let val = self .value_stack .pop(); *self.value_stack.pick_mut(index as usize) = val; Ok(InstructionOutcome::RunNextInstruction) } fn run_tee_local(&mut self, index: u32) -> Result { let val = self .value_stack .top() .clone(); *self.value_stack.pick_mut(index as usize) = val; Ok(InstructionOutcome::RunNextInstruction) } fn run_get_global( &mut self, context: &mut FunctionContext, index: u32, ) -> Result { let global = context .module() .global_by_index(index) .expect("Due to validation global should exists"); let val = global.get(); self.value_stack.push(val)?; Ok(InstructionOutcome::RunNextInstruction) } fn run_set_global( &mut self, context: &mut FunctionContext, index: u32, ) -> Result { let val = self .value_stack .pop(); let global = context .module() .global_by_index(index) .expect("Due to validation global should exists"); global.set(val).expect("Due to validation set to a global should succeed"); Ok(InstructionOutcome::RunNextInstruction) } fn run_load(&mut self, context: &mut FunctionContext, offset: u32) -> Result where RuntimeValue: From, T: LittleEndianConvert { let raw_address = self .value_stack .pop_as(); let address = effective_address( offset, raw_address, )?; let m = context.module() .memory_by_index(DEFAULT_MEMORY_INDEX) .expect("Due to validation memory should exists"); let b = m.get(address, mem::size_of::()) .map_err(|_| TrapKind::MemoryAccessOutOfBounds)?; let n = T::from_little_endian(&b) .expect("Can't fail since buffer length should be size_of::"); self.value_stack.push(n.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_load_extend(&mut self, context: &mut FunctionContext, offset: u32) -> Result where T: ExtendInto, RuntimeValue: From, T: LittleEndianConvert { let raw_address = self .value_stack .pop_as(); let address = effective_address( offset, raw_address, )?; let m = context.module() .memory_by_index(DEFAULT_MEMORY_INDEX) .expect("Due to validation memory should exists"); let b = m.get(address, mem::size_of::()) .map_err(|_| TrapKind::MemoryAccessOutOfBounds)?; let v = T::from_little_endian(&b) .expect("Can't fail since buffer length should be size_of::"); let stack_value: U = v.extend_into(); self .value_stack .push(stack_value.into()) .map_err(Into::into) .map(|_| InstructionOutcome::RunNextInstruction) } fn run_store(&mut self, context: &mut FunctionContext, offset: u32) -> Result where T: FromRuntimeValue, T: LittleEndianConvert { let stack_value = self .value_stack .pop_as::() .into_little_endian(); let raw_address = self .value_stack .pop_as::(); let address = effective_address( offset, raw_address, )?; let m = context.module() .memory_by_index(DEFAULT_MEMORY_INDEX) .expect("Due to validation memory should exists"); m.set(address, &stack_value) .map_err(|_| TrapKind::MemoryAccessOutOfBounds)?; Ok(InstructionOutcome::RunNextInstruction) } fn run_store_wrap( &mut self, context: &mut FunctionContext, offset: u32, ) -> Result where T: FromRuntimeValue, T: WrapInto, U: LittleEndianConvert, { let stack_value: T = self .value_stack .pop() .try_into() .expect("Due to validation value should be of proper type"); let stack_value = stack_value.wrap_into().into_little_endian(); let raw_address = self .value_stack .pop_as::(); let address = effective_address( offset, raw_address, )?; let m = context.module() .memory_by_index(DEFAULT_MEMORY_INDEX) .expect("Due to validation memory should exists"); m.set(address, &stack_value) .map_err(|_| TrapKind::MemoryAccessOutOfBounds)?; Ok(InstructionOutcome::RunNextInstruction) } fn run_current_memory(&mut self, context: &mut FunctionContext) -> Result { let m = context.module() .memory_by_index(DEFAULT_MEMORY_INDEX) .expect("Due to validation memory should exists"); let s = m.current_size().0; self .value_stack .push(RuntimeValue::I32(s as i32))?; Ok(InstructionOutcome::RunNextInstruction) } fn run_grow_memory(&mut self, context: &mut FunctionContext) -> Result { let pages: u32 = self .value_stack .pop_as(); let m = context.module() .memory_by_index(DEFAULT_MEMORY_INDEX) .expect("Due to validation memory should exists"); let m = match m.grow(Pages(pages as usize)) { Ok(Pages(new_size)) => new_size as u32, Err(_) => u32::MAX, // Returns -1 (or 0xFFFFFFFF) in case of error. }; self .value_stack .push(RuntimeValue::I32(m as i32))?; Ok(InstructionOutcome::RunNextInstruction) } fn run_const(&mut self, val: RuntimeValue) -> Result { self .value_stack .push(val) .map_err(Into::into) .map(|_| InstructionOutcome::RunNextInstruction) } fn run_relop(&mut self, f: F) -> Result where T: FromRuntimeValue, F: FnOnce(T, T) -> bool, { let (left, right) = self .value_stack .pop_pair_as::(); let v = if f(left, right) { RuntimeValue::I32(1) } else { RuntimeValue::I32(0) }; self.value_stack.push(v)?; Ok(InstructionOutcome::RunNextInstruction) } fn run_eqz(&mut self) -> Result where T: FromRuntimeValue, T: PartialEq + Default { let v = self .value_stack .pop_as::(); let v = RuntimeValue::I32(if v == Default::default() { 1 } else { 0 }); self.value_stack.push(v)?; Ok(InstructionOutcome::RunNextInstruction) } fn run_eq(&mut self) -> Result where T: FromRuntimeValue + PartialEq { self.run_relop(|left: T, right: T| left == right) } fn run_ne(&mut self) -> Result where T: FromRuntimeValue + PartialEq { self.run_relop(|left: T, right: T| left != right) } fn run_lt(&mut self) -> Result where T: FromRuntimeValue + PartialOrd { self.run_relop(|left: T, right: T| left < right) } fn run_gt(&mut self) -> Result where T: FromRuntimeValue + PartialOrd { self.run_relop(|left: T, right: T| left > right) } fn run_lte(&mut self) -> Result where T: FromRuntimeValue + PartialOrd { self.run_relop(|left: T, right: T| left <= right) } fn run_gte(&mut self) -> Result where T: FromRuntimeValue + PartialOrd { self.run_relop(|left: T, right: T| left >= right) } fn run_unop(&mut self, f: F) -> Result where F: FnOnce(T) -> U, T: FromRuntimeValue, RuntimeValue: From { let v = self .value_stack .pop_as::(); let v = f(v); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_clz(&mut self) -> Result where RuntimeValue: From, T: Integer + FromRuntimeValue { self.run_unop(|v: T| v.leading_zeros()) } fn run_ctz(&mut self) -> Result where RuntimeValue: From, T: Integer + FromRuntimeValue { self.run_unop(|v: T| v.trailing_zeros()) } fn run_popcnt(&mut self) -> Result where RuntimeValue: From, T: Integer + FromRuntimeValue { self.run_unop(|v: T| v.count_ones()) } fn run_add(&mut self) -> Result where RuntimeValue: From, T: ArithmeticOps + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.add(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_sub(&mut self) -> Result where RuntimeValue: From, T: ArithmeticOps + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.sub(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_mul(&mut self) -> Result where RuntimeValue: From, T: ArithmeticOps + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.mul(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_div(&mut self) -> Result where RuntimeValue: From, T: TransmuteInto + FromRuntimeValue, U: ArithmeticOps + TransmuteInto { let (left, right) = self .value_stack .pop_pair_as::(); let (left, right) = (left.transmute_into(), right.transmute_into()); let v = left.div(right)?; let v = v.transmute_into(); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_rem(&mut self) -> Result where RuntimeValue: From, T: TransmuteInto + FromRuntimeValue, U: Integer + TransmuteInto { let (left, right) = self .value_stack .pop_pair_as::(); let (left, right) = (left.transmute_into(), right.transmute_into()); let v = left.rem(right)?; let v = v.transmute_into(); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_and(&mut self) -> Result where RuntimeValue: From<::Output>, T: ops::BitAnd + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.bitand(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_or(&mut self) -> Result where RuntimeValue: From<::Output>, T: ops::BitOr + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.bitor(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_xor(&mut self) -> Result where RuntimeValue: From<::Output>, T: ops::BitXor + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.bitxor(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_shl(&mut self, mask: T) -> Result where RuntimeValue: From<>::Output>, T: ops::Shl + ops::BitAnd + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.shl(right & mask); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_shr(&mut self, mask: U) -> Result where RuntimeValue: From, T: TransmuteInto + FromRuntimeValue, U: ops::Shr + ops::BitAnd, >::Output: TransmuteInto { let (left, right) = self .value_stack .pop_pair_as::(); let (left, right) = (left.transmute_into(), right.transmute_into()); let v = left.shr(right & mask); let v = v.transmute_into(); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_rotl(&mut self) -> Result where RuntimeValue: From, T: Integer + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.rotl(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_rotr(&mut self) -> Result where RuntimeValue: From, T: Integer + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.rotr(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_abs(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { self.run_unop(|v: T| v.abs()) } fn run_neg(&mut self) -> Result where RuntimeValue: From<::Output>, T: ops::Neg + FromRuntimeValue { self.run_unop(|v: T| v.neg()) } fn run_ceil(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { self.run_unop(|v: T| v.ceil()) } fn run_floor(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { self.run_unop(|v: T| v.floor()) } fn run_trunc(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { self.run_unop(|v: T| v.trunc()) } fn run_nearest(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { self.run_unop(|v: T| v.nearest()) } fn run_sqrt(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { self.run_unop(|v: T| v.sqrt()) } fn run_min(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.min(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_max(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.max(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_copysign(&mut self) -> Result where RuntimeValue: From, T: Float + FromRuntimeValue { let (left, right) = self .value_stack .pop_pair_as::(); let v = left.copysign(right); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_wrap(&mut self) -> Result where RuntimeValue: From, T: WrapInto + FromRuntimeValue { self.run_unop(|v: T| v.wrap_into()) } fn run_trunc_to_int(&mut self) -> Result where RuntimeValue: From, T: TryTruncateInto + FromRuntimeValue, U: TransmuteInto, { let v = self .value_stack .pop_as::(); v.try_truncate_into() .map(|v| v.transmute_into()) .map(|v| self.value_stack.push(v.into())) .map(|_| InstructionOutcome::RunNextInstruction) } fn run_extend(&mut self) -> Result where RuntimeValue: From, T: ExtendInto + FromRuntimeValue, U: TransmuteInto { let v = self .value_stack .pop_as::(); let v = v.extend_into().transmute_into(); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } fn run_reinterpret(&mut self) -> Result where RuntimeValue: From, T: FromRuntimeValue, T: TransmuteInto { let v = self .value_stack .pop_as::(); let v = v.transmute_into(); self.value_stack.push(v.into())?; Ok(InstructionOutcome::RunNextInstruction) } } /// Function execution context. struct FunctionContext { /// Is context initialized. pub is_initialized: bool, /// Internal function reference. pub function: FuncRef, pub module: ModuleRef, /// Current instruction position. pub position: usize, } impl FunctionContext { pub fn new(function: FuncRef) -> Self { let module = match *function.as_internal() { FuncInstanceInternal::Internal { ref module, .. } => module.upgrade().expect("module deallocated"), FuncInstanceInternal::Host { .. } => panic!("Host functions can't be called as internally defined functions; Thus FunctionContext can be created only with internally defined functions; qed"), }; FunctionContext { is_initialized: false, function: function, module: ModuleRef(module), position: 0, } } pub fn nested(&mut self, function: FuncRef) -> Result { let module = match *function.as_internal() { FuncInstanceInternal::Internal { ref module, .. } => module.upgrade().expect("module deallocated"), FuncInstanceInternal::Host { .. } => panic!("Host functions can't be called as internally defined functions; Thus FunctionContext can be created only with internally defined functions; qed"), }; Ok(FunctionContext { is_initialized: false, function: function, module: ModuleRef(module), position: 0, }) } pub fn is_initialized(&self) -> bool { self.is_initialized } pub fn initialize(&mut self, locals: &[Local], value_stack: &mut ValueStack) -> Result<(), TrapKind> { debug_assert!(!self.is_initialized); let locals = locals.iter() .flat_map(|l| repeat(l.value_type()).take(l.count() as usize)) .map(::types::ValueType::from_elements) .map(RuntimeValue::default) .collect::>(); // TODO: Replace with extend. for local in locals { value_stack.push(local) .map_err(|_| TrapKind::StackOverflow)?; } self.is_initialized = true; Ok(()) } pub fn module(&self) -> ModuleRef { self.module.clone() } } impl fmt::Debug for FunctionContext { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "FunctionContext") } } fn effective_address(address: u32, offset: u32) -> Result { match offset.checked_add(address) { None => Err(TrapKind::MemoryAccessOutOfBounds), Some(address) => Ok(address), } } fn prepare_function_args( signature: &Signature, caller_stack: &mut ValueStack, ) -> Vec { let mut args = signature .params() .iter() .map(|_| caller_stack.pop()) .collect::>(); args.reverse(); check_function_args(signature, &args).expect("Due to validation arguments should match"); args } pub fn check_function_args(signature: &Signature, args: &[RuntimeValue]) -> Result<(), Error> { if signature.params().len() != args.len() { return Err( Error::Function( format!( "not enough arguments, given {} but expected: {}", args.len(), signature.params().len(), ) ) ); } signature.params().iter().cloned().zip(args).map(|(expected_type, param_value)| { let actual_type = param_value.value_type(); if actual_type != expected_type { return Err(Error::Function(format!("invalid parameter type {:?} when expected {:?}", actual_type, expected_type))); } Ok(()) }).collect::, _>>()?; Ok(()) } #[derive(Debug)] struct ValueStack { buf: Box<[RuntimeValue]>, /// Index of the first free place in the stack. sp: usize, } impl ValueStack { fn with_limit(limit: usize) -> ValueStack { let mut buf = Vec::new(); buf.resize(limit, RuntimeValue::I32(0)); ValueStack { buf: buf.into_boxed_slice(), sp: 0, } } #[inline] fn drop_keep(&mut self, drop: u32, keep: u8) { assert!(keep <= 1); if keep == 1 { let top = *self.top(); *self.pick_mut(drop as usize + 1) = top; } let cur_stack_len = self.len(); self.sp = cur_stack_len - drop as usize; } #[inline] fn pop_as(&mut self) -> T where T: FromRuntimeValue, { let value = self.pop(); value.try_into().expect("Due to validation stack top's type should match") } #[inline] fn pop_pair_as(&mut self) -> (T, T) where T: FromRuntimeValue, { let right = self.pop_as(); let left = self.pop_as(); (left, right) } #[inline] fn pop_triple(&mut self) -> (RuntimeValue, RuntimeValue, RuntimeValue) { let right = self.pop(); let mid = self.pop(); let left = self.pop(); (left, mid, right) } #[inline] fn top(&self) -> &RuntimeValue { self.pick(1) } fn pick(&self, depth: usize) -> &RuntimeValue { &self.buf[self.sp - depth] } #[inline] fn pick_mut(&mut self, depth: usize) -> &mut RuntimeValue { &mut self.buf[self.sp - depth] } #[inline] fn pop(&mut self) -> RuntimeValue { self.sp -= 1; self.buf[self.sp] } #[inline] fn push(&mut self, value: RuntimeValue) -> Result<(), TrapKind> { let cell = self.buf.get_mut(self.sp).ok_or_else(|| TrapKind::StackOverflow)?; *cell = value; self.sp += 1; Ok(()) } #[inline] fn len(&self) -> usize { self.sp } }