wasmi/src/value.rs

929 lines
28 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use core::{f32, i32, i64, u32, u64};
use nan_preserving_float::{F32, F64};
use types::ValueType;
use TrapKind;
/// Error for `LittleEndianConvert`
#[derive(Debug)]
pub enum Error {
/// The buffer is too short for the type being deserialized
InvalidLittleEndianBuffer,
}
/// Runtime representation of a value.
///
/// Wasm code manipulate values of the four basic value types:
/// integers and floating-point (IEEE 754-2008) data of 32 or 64 bit width each, respectively.
///
/// There is no distinction between signed and unsigned integer types. Instead, integers are
/// interpreted by respective operations as either unsigned or signed in twos complement representation.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum RuntimeValue {
/// Value of 32-bit signed or unsigned integer.
I32(i32),
/// Value of 64-bit signed or unsigned integer.
I64(i64),
/// Value of 32-bit IEEE 754-2008 floating point number.
F32(F32),
/// Value of 64-bit IEEE 754-2008 floating point number.
F64(F64),
}
/// Trait for creating value from a [`RuntimeValue`].
///
/// Typically each implementation can create a value from the specific type.
/// For example, values of type `bool` or `u32` are both represented by [`I32`] and `f64` values are represented by
/// [`F64`].
///
/// [`I32`]: enum.RuntimeValue.html#variant.I32
/// [`F64`]: enum.RuntimeValue.html#variant.F64
/// [`RuntimeValue`]: enum.RuntimeValue.html
pub trait FromRuntimeValue
where
Self: Sized,
{
/// Create a value of type `Self` from a given [`RuntimeValue`].
///
/// Returns `None` if the [`RuntimeValue`] is of type different than
/// expected by the conversion in question.
///
/// [`RuntimeValue`]: enum.RuntimeValue.html
fn from_runtime_value(val: RuntimeValue) -> Option<Self>;
}
/// Convert one type to another by wrapping.
pub trait WrapInto<T> {
/// Convert one type to another by wrapping.
fn wrap_into(self) -> T;
}
/// Convert one type to another by rounding to the nearest integer towards zero.
pub trait TryTruncateInto<T, E> {
/// Convert one type to another by rounding to the nearest integer towards zero.
fn try_truncate_into(self) -> Result<T, E>;
}
/// Convert one type to another by extending with leading zeroes.
pub trait ExtendInto<T> {
/// Convert one type to another by extending with leading zeroes.
fn extend_into(self) -> T;
}
/// Reinterprets the bits of a value of one type as another type.
pub trait TransmuteInto<T> {
/// Reinterprets the bits of a value of one type as another type.
fn transmute_into(self) -> T;
}
/// Convert from and to little endian.
pub trait LittleEndianConvert
where
Self: Sized,
{
/// Convert to little endian buffer.
fn into_little_endian(self, buffer: &mut [u8]);
/// Convert from little endian buffer.
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error>;
}
/// Arithmetic operations.
pub trait ArithmeticOps<T> {
/// Add two values.
fn add(self, other: T) -> T;
/// Subtract two values.
fn sub(self, other: T) -> T;
/// Multiply two values.
fn mul(self, other: T) -> T;
/// Divide two values.
fn div(self, other: T) -> Result<T, TrapKind>;
}
/// Integer value.
pub trait Integer<T>: ArithmeticOps<T> {
/// Counts leading zeros in the bitwise representation of the value.
fn leading_zeros(self) -> T;
/// Counts trailing zeros in the bitwise representation of the value.
fn trailing_zeros(self) -> T;
/// Counts 1-bits in the bitwise representation of the value.
fn count_ones(self) -> T;
/// Get left bit rotation result.
fn rotl(self, other: T) -> T;
/// Get right bit rotation result.
fn rotr(self, other: T) -> T;
/// Get division remainder.
fn rem(self, other: T) -> Result<T, TrapKind>;
}
/// Float-point value.
pub trait Float<T>: ArithmeticOps<T> {
/// Get absolute value.
fn abs(self) -> T;
/// Returns the largest integer less than or equal to a number.
fn floor(self) -> T;
/// Returns the smallest integer greater than or equal to a number.
fn ceil(self) -> T;
/// Returns the integer part of a number.
fn trunc(self) -> T;
/// Returns the nearest integer to a number. Round half-way cases away from 0.0.
fn round(self) -> T;
/// Returns the nearest integer to a number. Ties are round to even number.
fn nearest(self) -> T;
/// Takes the square root of a number.
fn sqrt(self) -> T;
/// Returns the minimum of the two numbers.
fn min(self, other: T) -> T;
/// Returns the maximum of the two numbers.
fn max(self, other: T) -> T;
/// Sets sign of this value to the sign of other value.
fn copysign(self, other: T) -> T;
}
impl RuntimeValue {
/// Creates new default value of given type.
pub fn default(value_type: ValueType) -> Self {
match value_type {
ValueType::I32 => RuntimeValue::I32(0),
ValueType::I64 => RuntimeValue::I64(0),
ValueType::F32 => RuntimeValue::F32(0f32.into()),
ValueType::F64 => RuntimeValue::F64(0f64.into()),
}
}
/// Creates new value by interpreting passed u32 as f32.
pub fn decode_f32(val: u32) -> Self {
RuntimeValue::F32(F32::from_bits(val))
}
/// Creates new value by interpreting passed u64 as f64.
pub fn decode_f64(val: u64) -> Self {
RuntimeValue::F64(F64::from_bits(val))
}
/// Get variable type for this value.
pub fn value_type(&self) -> ValueType {
match *self {
RuntimeValue::I32(_) => ValueType::I32,
RuntimeValue::I64(_) => ValueType::I64,
RuntimeValue::F32(_) => ValueType::F32,
RuntimeValue::F64(_) => ValueType::F64,
}
}
/// Returns `T` if this particular [`RuntimeValue`] contains
/// appropriate type.
///
/// See [`FromRuntimeValue`] for details.
///
/// [`FromRuntimeValue`]: trait.FromRuntimeValue.html
/// [`RuntimeValue`]: enum.RuntimeValue.html
pub fn try_into<T: FromRuntimeValue>(self) -> Option<T> {
FromRuntimeValue::from_runtime_value(self)
}
}
impl From<i8> for RuntimeValue {
fn from(val: i8) -> Self {
RuntimeValue::I32(val as i32)
}
}
impl From<i16> for RuntimeValue {
fn from(val: i16) -> Self {
RuntimeValue::I32(val as i32)
}
}
impl From<i32> for RuntimeValue {
fn from(val: i32) -> Self {
RuntimeValue::I32(val)
}
}
impl From<i64> for RuntimeValue {
fn from(val: i64) -> Self {
RuntimeValue::I64(val)
}
}
impl From<u8> for RuntimeValue {
fn from(val: u8) -> Self {
RuntimeValue::I32(val as i32)
}
}
impl From<u16> for RuntimeValue {
fn from(val: u16) -> Self {
RuntimeValue::I32(val as i32)
}
}
impl From<u32> for RuntimeValue {
fn from(val: u32) -> Self {
RuntimeValue::I32(val.transmute_into())
}
}
impl From<u64> for RuntimeValue {
fn from(val: u64) -> Self {
RuntimeValue::I64(val.transmute_into())
}
}
impl From<F32> for RuntimeValue {
fn from(val: F32) -> Self {
RuntimeValue::F32(val)
}
}
impl From<F64> for RuntimeValue {
fn from(val: F64) -> Self {
RuntimeValue::F64(val)
}
}
macro_rules! impl_from_runtime_value {
($expected_rt_ty: ident, $into: ty) => {
impl FromRuntimeValue for $into {
fn from_runtime_value(val: RuntimeValue) -> Option<Self> {
match val {
RuntimeValue::$expected_rt_ty(val) => Some(val.transmute_into()),
_ => None,
}
}
}
};
}
/// This conversion assumes that boolean values are represented by
/// [`I32`] type.
///
/// [`I32`]: enum.RuntimeValue.html#variant.I32
impl FromRuntimeValue for bool {
fn from_runtime_value(val: RuntimeValue) -> Option<Self> {
match val {
RuntimeValue::I32(val) => Some(val != 0),
_ => None,
}
}
}
/// This conversion assumes that `i8` is represented as an [`I32`].
///
/// [`I32`]: enum.RuntimeValue.html#variant.I32
impl FromRuntimeValue for i8 {
fn from_runtime_value(val: RuntimeValue) -> Option<Self> {
let min = i8::min_value() as i32;
let max = i8::max_value() as i32;
match val {
RuntimeValue::I32(val) if min <= val && val <= max => Some(val as i8),
_ => None,
}
}
}
/// This conversion assumes that `i16` is represented as an [`I32`].
///
/// [`I32`]: enum.RuntimeValue.html#variant.I32
impl FromRuntimeValue for i16 {
fn from_runtime_value(val: RuntimeValue) -> Option<Self> {
let min = i16::min_value() as i32;
let max = i16::max_value() as i32;
match val {
RuntimeValue::I32(val) if min <= val && val <= max => Some(val as i16),
_ => None,
}
}
}
/// This conversion assumes that `u8` is represented as an [`I32`].
///
/// [`I32`]: enum.RuntimeValue.html#variant.I32
impl FromRuntimeValue for u8 {
fn from_runtime_value(val: RuntimeValue) -> Option<Self> {
let min = u8::min_value() as i32;
let max = u8::max_value() as i32;
match val {
RuntimeValue::I32(val) if min <= val && val <= max => Some(val as u8),
_ => None,
}
}
}
/// This conversion assumes that `u16` is represented as an [`I32`].
///
/// [`I32`]: enum.RuntimeValue.html#variant.I32
impl FromRuntimeValue for u16 {
fn from_runtime_value(val: RuntimeValue) -> Option<Self> {
let min = u16::min_value() as i32;
let max = u16::max_value() as i32;
match val {
RuntimeValue::I32(val) if min <= val && val <= max => Some(val as u16),
_ => None,
}
}
}
impl_from_runtime_value!(I32, i32);
impl_from_runtime_value!(I64, i64);
impl_from_runtime_value!(F32, F32);
impl_from_runtime_value!(F64, F64);
impl_from_runtime_value!(I32, u32);
impl_from_runtime_value!(I64, u64);
macro_rules! impl_wrap_into {
($from:ident, $into:ident) => {
impl WrapInto<$into> for $from {
fn wrap_into(self) -> $into {
self as $into
}
}
};
($from:ident, $intermediate:ident, $into:ident) => {
impl WrapInto<$into> for $from {
fn wrap_into(self) -> $into {
$into::from(self as $intermediate)
}
}
};
}
impl_wrap_into!(i32, i8);
impl_wrap_into!(i32, i16);
impl_wrap_into!(i64, i8);
impl_wrap_into!(i64, i16);
impl_wrap_into!(i64, i32);
impl_wrap_into!(i64, f32, F32);
impl_wrap_into!(u64, f32, F32);
// Casting from an f64 to an f32 will produce the closest possible value (rounding strategy unspecified)
// NOTE: currently this will cause Undefined Behavior if the value is finite but larger or smaller than the
// largest or smallest finite value representable by f32. This is a bug and will be fixed.
impl_wrap_into!(f64, f32);
impl WrapInto<F32> for F64 {
fn wrap_into(self) -> F32 {
(f64::from(self) as f32).into()
}
}
macro_rules! impl_try_truncate_into {
(@primitive $from: ident, $into: ident, $to_primitive:path) => {
impl TryTruncateInto<$into, TrapKind> for $from {
fn try_truncate_into(self) -> Result<$into, TrapKind> {
// Casting from a float to an integer will round the float towards zero
num_rational::BigRational::from_float(self)
.map(|val| val.to_integer())
.and_then(|val| $to_primitive(&val))
.ok_or(TrapKind::InvalidConversionToInt)
}
}
};
(@wrapped $from:ident, $intermediate:ident, $into:ident) => {
impl TryTruncateInto<$into, TrapKind> for $from {
fn try_truncate_into(self) -> Result<$into, TrapKind> {
$intermediate::from(self).try_truncate_into()
}
}
};
}
impl_try_truncate_into!(@primitive f32, i32, num_traits::cast::ToPrimitive::to_i32);
impl_try_truncate_into!(@primitive f32, i64, num_traits::cast::ToPrimitive::to_i64);
impl_try_truncate_into!(@primitive f64, i32, num_traits::cast::ToPrimitive::to_i32);
impl_try_truncate_into!(@primitive f64, i64, num_traits::cast::ToPrimitive::to_i64);
impl_try_truncate_into!(@primitive f32, u32, num_traits::cast::ToPrimitive::to_u32);
impl_try_truncate_into!(@primitive f32, u64, num_traits::cast::ToPrimitive::to_u64);
impl_try_truncate_into!(@primitive f64, u32, num_traits::cast::ToPrimitive::to_u32);
impl_try_truncate_into!(@primitive f64, u64, num_traits::cast::ToPrimitive::to_u64);
impl_try_truncate_into!(@wrapped F32, f32, i32);
impl_try_truncate_into!(@wrapped F32, f32, i64);
impl_try_truncate_into!(@wrapped F64, f64, i32);
impl_try_truncate_into!(@wrapped F64, f64, i64);
impl_try_truncate_into!(@wrapped F32, f32, u32);
impl_try_truncate_into!(@wrapped F32, f32, u64);
impl_try_truncate_into!(@wrapped F64, f64, u32);
impl_try_truncate_into!(@wrapped F64, f64, u64);
macro_rules! impl_extend_into {
($from:ident, $into:ident) => {
impl ExtendInto<$into> for $from {
fn extend_into(self) -> $into {
self as $into
}
}
};
($from:ident, $intermediate:ident, $into:ident) => {
impl ExtendInto<$into> for $from {
fn extend_into(self) -> $into {
$into::from(self as $intermediate)
}
}
};
}
impl_extend_into!(i8, i32);
impl_extend_into!(u8, i32);
impl_extend_into!(i16, i32);
impl_extend_into!(u16, i32);
impl_extend_into!(i8, i64);
impl_extend_into!(u8, i64);
impl_extend_into!(i16, i64);
impl_extend_into!(u16, i64);
impl_extend_into!(i32, i64);
impl_extend_into!(u32, i64);
impl_extend_into!(u32, u64);
impl_extend_into!(i32, f32);
impl_extend_into!(i32, f64);
impl_extend_into!(u32, f32);
impl_extend_into!(u32, f64);
impl_extend_into!(i64, f64);
impl_extend_into!(u64, f64);
impl_extend_into!(f32, f64);
impl_extend_into!(i32, f32, F32);
impl_extend_into!(i32, f64, F64);
impl_extend_into!(u32, f32, F32);
impl_extend_into!(u32, f64, F64);
impl_extend_into!(i64, f64, F64);
impl_extend_into!(u64, f64, F64);
impl_extend_into!(f32, f64, F64);
impl ExtendInto<F64> for F32 {
fn extend_into(self) -> F64 {
(f32::from(self) as f64).into()
}
}
macro_rules! impl_transmute_into_self {
($type: ident) => {
impl TransmuteInto<$type> for $type {
fn transmute_into(self) -> $type {
self
}
}
};
}
impl_transmute_into_self!(i32);
impl_transmute_into_self!(i64);
impl_transmute_into_self!(f32);
impl_transmute_into_self!(f64);
impl_transmute_into_self!(F32);
impl_transmute_into_self!(F64);
macro_rules! impl_transmute_into_as {
($from: ident, $into: ident) => {
impl TransmuteInto<$into> for $from {
fn transmute_into(self) -> $into {
self as $into
}
}
};
}
impl_transmute_into_as!(i8, u8);
impl_transmute_into_as!(i32, u32);
impl_transmute_into_as!(i64, u64);
macro_rules! impl_transmute_into_npf {
($npf:ident, $float:ident, $signed:ident, $unsigned:ident) => {
impl TransmuteInto<$float> for $npf {
fn transmute_into(self) -> $float {
self.into()
}
}
impl TransmuteInto<$npf> for $float {
fn transmute_into(self) -> $npf {
self.into()
}
}
impl TransmuteInto<$signed> for $npf {
fn transmute_into(self) -> $signed {
self.to_bits() as _
}
}
impl TransmuteInto<$unsigned> for $npf {
fn transmute_into(self) -> $unsigned {
self.to_bits()
}
}
impl TransmuteInto<$npf> for $signed {
fn transmute_into(self) -> $npf {
$npf::from_bits(self as _)
}
}
impl TransmuteInto<$npf> for $unsigned {
fn transmute_into(self) -> $npf {
$npf::from_bits(self)
}
}
};
}
impl_transmute_into_npf!(F32, f32, i32, u32);
impl_transmute_into_npf!(F64, f64, i64, u64);
impl TransmuteInto<i32> for f32 {
fn transmute_into(self) -> i32 {
self.to_bits() as i32
}
}
impl TransmuteInto<i64> for f64 {
fn transmute_into(self) -> i64 {
self.to_bits() as i64
}
}
impl TransmuteInto<f32> for i32 {
fn transmute_into(self) -> f32 {
f32::from_bits(self as u32)
}
}
impl TransmuteInto<f64> for i64 {
fn transmute_into(self) -> f64 {
f64::from_bits(self as u64)
}
}
impl TransmuteInto<i32> for u32 {
fn transmute_into(self) -> i32 {
self as _
}
}
impl TransmuteInto<i64> for u64 {
fn transmute_into(self) -> i64 {
self as _
}
}
impl LittleEndianConvert for i8 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer[0] = self as u8;
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
buffer
.get(0)
.map(|v| *v as i8)
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for u8 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer[0] = self;
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
buffer
.get(0)
.cloned()
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for i16 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer.copy_from_slice(&self.to_le_bytes());
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
let mut res = [0u8; 2];
buffer
.get(0..2)
.map(|s| {
res.copy_from_slice(s);
Self::from_le_bytes(res)
})
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for u16 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer.copy_from_slice(&self.to_le_bytes());
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
let mut res = [0u8; 2];
buffer
.get(0..2)
.map(|s| {
res.copy_from_slice(s);
Self::from_le_bytes(res)
})
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for i32 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer.copy_from_slice(&self.to_le_bytes());
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
let mut res = [0u8; 4];
buffer
.get(0..4)
.map(|s| {
res.copy_from_slice(s);
Self::from_le_bytes(res)
})
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for u32 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer.copy_from_slice(&self.to_le_bytes());
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
let mut res = [0u8; 4];
buffer
.get(0..4)
.map(|s| {
res.copy_from_slice(s);
Self::from_le_bytes(res)
})
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for i64 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer.copy_from_slice(&self.to_le_bytes());
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
let mut res = [0u8; 8];
buffer
.get(0..8)
.map(|s| {
res.copy_from_slice(s);
Self::from_le_bytes(res)
})
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for f32 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer.copy_from_slice(&self.to_bits().to_le_bytes());
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
let mut res = [0u8; 4];
buffer
.get(0..4)
.map(|s| {
res.copy_from_slice(s);
Self::from_bits(u32::from_le_bytes(res))
})
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for f64 {
fn into_little_endian(self, buffer: &mut [u8]) {
buffer.copy_from_slice(&self.to_bits().to_le_bytes());
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
let mut res = [0u8; 8];
buffer
.get(0..8)
.map(|s| {
res.copy_from_slice(s);
Self::from_bits(u64::from_le_bytes(res))
})
.ok_or_else(|| Error::InvalidLittleEndianBuffer)
}
}
impl LittleEndianConvert for F32 {
fn into_little_endian(self, buffer: &mut [u8]) {
(self.to_bits() as i32).into_little_endian(buffer)
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
i32::from_little_endian(buffer).map(|val| Self::from_bits(val as _))
}
}
impl LittleEndianConvert for F64 {
fn into_little_endian(self, buffer: &mut [u8]) {
(self.to_bits() as i64).into_little_endian(buffer)
}
fn from_little_endian(buffer: &[u8]) -> Result<Self, Error> {
i64::from_little_endian(buffer).map(|val| Self::from_bits(val as _))
}
}
macro_rules! impl_integer_arithmetic_ops {
($type: ident) => {
impl ArithmeticOps<$type> for $type {
fn add(self, other: $type) -> $type {
self.wrapping_add(other)
}
fn sub(self, other: $type) -> $type {
self.wrapping_sub(other)
}
fn mul(self, other: $type) -> $type {
self.wrapping_mul(other)
}
fn div(self, other: $type) -> Result<$type, TrapKind> {
if other == 0 {
Err(TrapKind::DivisionByZero)
} else {
let (result, overflow) = self.overflowing_div(other);
if overflow {
Err(TrapKind::InvalidConversionToInt)
} else {
Ok(result)
}
}
}
}
};
}
impl_integer_arithmetic_ops!(i32);
impl_integer_arithmetic_ops!(u32);
impl_integer_arithmetic_ops!(i64);
impl_integer_arithmetic_ops!(u64);
macro_rules! impl_float_arithmetic_ops {
($type: ident) => {
impl ArithmeticOps<$type> for $type {
fn add(self, other: $type) -> $type {
self + other
}
fn sub(self, other: $type) -> $type {
self - other
}
fn mul(self, other: $type) -> $type {
self * other
}
fn div(self, other: $type) -> Result<$type, TrapKind> {
Ok(self / other)
}
}
};
}
impl_float_arithmetic_ops!(f32);
impl_float_arithmetic_ops!(f64);
impl_float_arithmetic_ops!(F32);
impl_float_arithmetic_ops!(F64);
macro_rules! impl_integer {
($type: ident) => {
impl Integer<$type> for $type {
fn leading_zeros(self) -> $type {
self.leading_zeros() as $type
}
fn trailing_zeros(self) -> $type {
self.trailing_zeros() as $type
}
fn count_ones(self) -> $type {
self.count_ones() as $type
}
fn rotl(self, other: $type) -> $type {
self.rotate_left(other as u32)
}
fn rotr(self, other: $type) -> $type {
self.rotate_right(other as u32)
}
fn rem(self, other: $type) -> Result<$type, TrapKind> {
if other == 0 {
Err(TrapKind::DivisionByZero)
} else {
Ok(self.wrapping_rem(other))
}
}
}
};
}
impl_integer!(i32);
impl_integer!(u32);
impl_integer!(i64);
impl_integer!(u64);
// Use std float functions in std environment.
// And libm's implementation in no_std
#[cfg(feature = "std")]
macro_rules! call_math {
($op:ident, $e:expr, $fXX:ident, $FXXExt:ident) => {
$fXX::$op($e)
};
}
#[cfg(not(feature = "std"))]
macro_rules! call_math {
($op:ident, $e:expr, $fXX:ident, $FXXExt:ident) => {
::libm::$FXXExt::$op($e)
};
}
// We cannot call the math functions directly, because there are multiple available implementaitons in no_std.
// In std, there are only `Value::$op` and `std::$fXX:$op`.
// The `std` ones are preferred, because they are not from a trait.
// For `no_std`, the implementations are `Value::$op` and `libm::FXXExt::$op`,
// both of which are trait implementations and hence ambiguous.
// So we have to use a full path, which is what `call_math!` does.
macro_rules! impl_float {
($type:ident, $fXX:ident, $FXXExt:ident, $iXX:ident) => {
impl Float<$type> for $type {
fn abs(self) -> $type {
call_math!(abs, $fXX::from(self), $fXX, $FXXExt).into()
}
fn floor(self) -> $type {
call_math!(floor, $fXX::from(self), $fXX, $FXXExt).into()
}
fn ceil(self) -> $type {
call_math!(ceil, $fXX::from(self), $fXX, $FXXExt).into()
}
fn trunc(self) -> $type {
call_math!(trunc, $fXX::from(self), $fXX, $FXXExt).into()
}
fn round(self) -> $type {
call_math!(round, $fXX::from(self), $fXX, $FXXExt).into()
}
fn nearest(self) -> $type {
let round = self.round();
if call_math!(fract, $fXX::from(self), $fXX, $FXXExt).abs() != 0.5 {
return round;
}
use core::ops::Rem;
if round.rem(2.0) == 1.0 {
self.floor()
} else if round.rem(2.0) == -1.0 {
self.ceil()
} else {
round
}
}
fn sqrt(self) -> $type {
call_math!(sqrt, $fXX::from(self), $fXX, $FXXExt).into()
}
// This instruction corresponds to what is sometimes called "minNaN" in other languages.
fn min(self, other: $type) -> $type {
if self.is_nan() {
return self;
}
if other.is_nan() {
return other;
}
self.min(other)
}
// This instruction corresponds to what is sometimes called "maxNaN" in other languages.
fn max(self, other: $type) -> $type {
if self.is_nan() {
return self;
}
if other.is_nan() {
return other;
}
self.max(other)
}
fn copysign(self, other: $type) -> $type {
use core::mem::size_of;
if self.is_nan() {
return self;
}
let sign_mask: $iXX = 1 << ((size_of::<$iXX>() << 3) - 1);
let self_int: $iXX = self.transmute_into();
let other_int: $iXX = other.transmute_into();
let is_self_sign_set = (self_int & sign_mask) != 0;
let is_other_sign_set = (other_int & sign_mask) != 0;
if is_self_sign_set == is_other_sign_set {
self
} else if is_other_sign_set {
(self_int | sign_mask).transmute_into()
} else {
(self_int & !sign_mask).transmute_into()
}
}
}
};
}
impl_float!(f32, f32, F32Ext, i32);
impl_float!(f64, f64, F64Ext, i64);
impl_float!(F32, f32, F32Ext, i32);
impl_float!(F64, f64, F64Ext, i64);