wasmi/src/module.rs

840 lines
30 KiB
Rust

#[allow(unused_imports)]
use alloc::prelude::*;
use alloc::rc::Rc;
use core::cell::RefCell;
use core::fmt;
use Trap;
#[cfg(not(feature = "std"))]
use hashmap_core::HashMap;
#[cfg(feature = "std")]
use std::collections::HashMap;
use common::{DEFAULT_MEMORY_INDEX, DEFAULT_TABLE_INDEX};
use func::{FuncBody, FuncInstance, FuncRef};
use global::{GlobalInstance, GlobalRef};
use host::Externals;
use imports::ImportResolver;
use memory::MemoryRef;
use memory_units::Pages;
use parity_wasm::elements::{External, InitExpr, Instruction, Internal, ResizableLimits, Type};
use table::TableRef;
use types::{GlobalDescriptor, MemoryDescriptor, TableDescriptor};
use {Error, MemoryInstance, Module, RuntimeValue, Signature, TableInstance};
/// Reference to a [`ModuleInstance`].
///
/// This reference has a reference-counting semantics.
///
/// All [`ModuleInstance`] have strong references to it's components (i.e.
/// globals, memories, funcs, tables), however, this components have
/// weak references to it's containing module. This might be a problem
/// at execution time.
///
/// So if have to make sure that all modules which might be needed at execution time
/// should be retained.
///
/// [`ModuleInstance`]: struct.ModuleInstance.html
#[derive(Clone, Debug)]
pub struct ModuleRef(pub(crate) Rc<ModuleInstance>);
impl ::core::ops::Deref for ModuleRef {
type Target = ModuleInstance;
fn deref(&self) -> &ModuleInstance {
&self.0
}
}
/// An external value is the runtime representation of an entity
/// that can be imported or exported.
pub enum ExternVal {
/// [Function][`FuncInstance`].
///
/// [`FuncInstance`]: struct.FuncInstance.html
Func(FuncRef),
/// [Table][`TableInstance`].
///
/// [`TableInstance`]: struct.TableInstance.html
Table(TableRef),
/// [Memory][`MemoryInstance`].
///
/// [`MemoryInstance`]: struct.MemoryInstance.html
Memory(MemoryRef),
/// [Global][`GlobalInstance`].
///
/// Should be immutable.
///
/// [`GlobalInstance`]: struct.GlobalInstance.html
Global(GlobalRef),
}
impl Clone for ExternVal {
fn clone(&self) -> Self {
match *self {
ExternVal::Func(ref func) => ExternVal::Func(func.clone()),
ExternVal::Table(ref table) => ExternVal::Table(table.clone()),
ExternVal::Memory(ref memory) => ExternVal::Memory(memory.clone()),
ExternVal::Global(ref global) => ExternVal::Global(global.clone()),
}
}
}
impl fmt::Debug for ExternVal {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"ExternVal {{ {} }}",
match *self {
ExternVal::Func(_) => "Func",
ExternVal::Table(_) => "Table",
ExternVal::Memory(_) => "Memory",
ExternVal::Global(_) => "Global",
}
)
}
}
impl ExternVal {
/// Get underlying function reference if this `ExternVal` contains
/// a function, or `None` if it is some other kind.
pub fn as_func(&self) -> Option<&FuncRef> {
match *self {
ExternVal::Func(ref func) => Some(func),
_ => None,
}
}
/// Get underlying table reference if this `ExternVal` contains
/// a table, or `None` if it is some other kind.
pub fn as_table(&self) -> Option<&TableRef> {
match *self {
ExternVal::Table(ref table) => Some(table),
_ => None,
}
}
/// Get underlying memory reference if this `ExternVal` contains
/// a memory, or `None` if it is some other kind.
pub fn as_memory(&self) -> Option<&MemoryRef> {
match *self {
ExternVal::Memory(ref memory) => Some(memory),
_ => None,
}
}
/// Get underlying global variable reference if this `ExternVal` contains
/// a global, or `None` if it is some other kind.
pub fn as_global(&self) -> Option<&GlobalRef> {
match *self {
ExternVal::Global(ref global) => Some(global),
_ => None,
}
}
}
/// A module instance is the runtime representation of a [module][`Module`].
///
/// It is created by instantiating a [module][`Module`], and collects runtime representations
/// of all entities that are imported or defined by the module, namely:
///
/// - [functions][`FuncInstance`],
/// - [memories][`MemoryInstance`],
/// - [tables][`TableInstance`],
/// - [globals][`GlobalInstance`],
///
/// In order to instantiate a module you need to provide entities to satisfy
/// every module's imports (i.e. wasm modules don't have optional imports).
///
/// After module is instantiated you can start invoking it's exported functions with [`invoke_export`].
///
/// [`Module`]: struct.Module.html
/// [`FuncInstance`]: struct.FuncInstance.html
/// [`MemoryInstance`]: struct.MemoryInstance.html
/// [`TableInstance`]: struct.TableInstance.html
/// [`GlobalInstance`]: struct.GlobalInstance.html
/// [`invoke_export`]: #method.invoke_export
#[derive(Debug)]
pub struct ModuleInstance {
signatures: RefCell<Vec<Rc<Signature>>>,
tables: RefCell<Vec<TableRef>>,
funcs: RefCell<Vec<FuncRef>>,
memories: RefCell<Vec<MemoryRef>>,
globals: RefCell<Vec<GlobalRef>>,
exports: RefCell<HashMap<String, ExternVal>>,
}
impl ModuleInstance {
fn default() -> Self {
ModuleInstance {
funcs: RefCell::new(Vec::new()),
signatures: RefCell::new(Vec::new()),
tables: RefCell::new(Vec::new()),
memories: RefCell::new(Vec::new()),
globals: RefCell::new(Vec::new()),
exports: RefCell::new(HashMap::new()),
}
}
pub(crate) fn memory_by_index(&self, idx: u32) -> Option<MemoryRef> {
self.memories.borrow_mut().get(idx as usize).cloned()
}
pub(crate) fn table_by_index(&self, idx: u32) -> Option<TableRef> {
self.tables.borrow_mut().get(idx as usize).cloned()
}
pub(crate) fn global_by_index(&self, idx: u32) -> Option<GlobalRef> {
self.globals.borrow_mut().get(idx as usize).cloned()
}
pub(crate) fn func_by_index(&self, idx: u32) -> Option<FuncRef> {
self.funcs.borrow().get(idx as usize).cloned()
}
pub(crate) fn signature_by_index(&self, idx: u32) -> Option<Rc<Signature>> {
self.signatures.borrow().get(idx as usize).cloned()
}
fn push_func(&self, func: FuncRef) {
self.funcs.borrow_mut().push(func);
}
fn push_signature(&self, signature: Rc<Signature>) {
self.signatures.borrow_mut().push(signature)
}
fn push_memory(&self, memory: MemoryRef) {
self.memories.borrow_mut().push(memory)
}
fn push_table(&self, table: TableRef) {
self.tables.borrow_mut().push(table)
}
fn push_global(&self, global: GlobalRef) {
self.globals.borrow_mut().push(global)
}
fn insert_export<N: Into<String>>(&self, name: N, extern_val: ExternVal) {
self.exports.borrow_mut().insert(name.into(), extern_val);
}
fn alloc_module<'i, I: Iterator<Item = &'i ExternVal>>(
loaded_module: &Module,
extern_vals: I,
) -> Result<ModuleRef, Error> {
let module = loaded_module.module();
let instance = ModuleRef(Rc::new(ModuleInstance::default()));
for &Type::Function(ref ty) in module.type_section().map(|ts| ts.types()).unwrap_or(&[]) {
let signature = Rc::new(Signature::from_elements(ty));
instance.push_signature(signature);
}
{
let mut imports = module
.import_section()
.map(|is| is.entries())
.unwrap_or(&[])
.into_iter();
let mut extern_vals = extern_vals;
loop {
// Iterate on imports and extern_vals in lockstep, a-la `Iterator:zip`.
// We can't use `Iterator::zip` since we want to check if lengths of both iterators are same and
// `Iterator::zip` just returns `None` if either of iterators return `None`.
let (import, extern_val) = match (imports.next(), extern_vals.next()) {
(Some(import), Some(extern_val)) => (import, extern_val),
(None, None) => break,
(Some(_), None) | (None, Some(_)) => {
return Err(Error::Instantiation(
"extern_vals length is not equal to import section entries".to_owned(),
));
}
};
match (import.external(), extern_val) {
(&External::Function(fn_type_idx), &ExternVal::Func(ref func)) => {
let expected_fn_type = instance
.signature_by_index(fn_type_idx)
.expect("Due to validation function type should exists");
let actual_fn_type = func.signature();
if &*expected_fn_type != actual_fn_type {
return Err(Error::Instantiation(format!(
"Expected function with type {:?}, but actual type is {:?} for entry {}",
expected_fn_type,
actual_fn_type,
import.field(),
)));
}
instance.push_func(func.clone())
}
(&External::Table(ref tt), &ExternVal::Table(ref table)) => {
match_limits(table.limits(), tt.limits())?;
instance.push_table(table.clone());
}
(&External::Memory(ref mt), &ExternVal::Memory(ref memory)) => {
match_limits(memory.limits(), mt.limits())?;
instance.push_memory(memory.clone());
}
(&External::Global(ref gl), &ExternVal::Global(ref global)) => {
if gl.content_type() != global.elements_value_type() {
return Err(Error::Instantiation(format!(
"Expect global with {:?} type, but provided global with {:?} type",
gl.content_type(),
global.value_type(),
)));
}
instance.push_global(global.clone());
}
(expected_import, actual_extern_val) => {
return Err(Error::Instantiation(format!(
"Expected {:?} type, but provided {:?} extern_val",
expected_import, actual_extern_val
)));
}
}
}
}
let code = loaded_module.code();
{
let funcs = module
.function_section()
.map(|fs| fs.entries())
.unwrap_or(&[]);
let bodies = module.code_section().map(|cs| cs.bodies()).unwrap_or(&[]);
debug_assert!(
funcs.len() == bodies.len(),
"Due to validation func and body counts must match"
);
for (index, (ty, body)) in
Iterator::zip(funcs.into_iter(), bodies.into_iter()).enumerate()
{
let signature = instance
.signature_by_index(ty.type_ref())
.expect("Due to validation type should exists");
let code = code.get(index).expect(
"At func validation time labels are collected; Collected labels are added by index; qed",
).clone();
let func_body = FuncBody {
locals: body.locals().to_vec(),
code: code,
};
let func_instance =
FuncInstance::alloc_internal(Rc::downgrade(&instance.0), signature, func_body);
instance.push_func(func_instance);
}
}
for table_type in module.table_section().map(|ts| ts.entries()).unwrap_or(&[]) {
let table =
TableInstance::alloc(table_type.limits().initial(), table_type.limits().maximum())?;
instance.push_table(table);
}
for memory_type in module
.memory_section()
.map(|ms| ms.entries())
.unwrap_or(&[])
{
let initial: Pages = Pages(memory_type.limits().initial() as usize);
let maximum: Option<Pages> = memory_type.limits().maximum().map(|m| Pages(m as usize));
let memory = MemoryInstance::alloc(initial, maximum)
.expect("Due to validation `initial` and `maximum` should be valid");
instance.push_memory(memory);
}
for global_entry in module
.global_section()
.map(|gs| gs.entries())
.unwrap_or(&[])
{
let init_val = eval_init_expr(global_entry.init_expr(), &*instance);
let global = GlobalInstance::alloc(init_val, global_entry.global_type().is_mutable());
instance.push_global(global);
}
for export in module
.export_section()
.map(|es| es.entries())
.unwrap_or(&[])
{
let field = export.field();
let extern_val: ExternVal = match *export.internal() {
Internal::Function(idx) => {
let func = instance
.func_by_index(idx)
.expect("Due to validation func should exists");
ExternVal::Func(func)
}
Internal::Global(idx) => {
let global = instance
.global_by_index(idx)
.expect("Due to validation global should exists");
ExternVal::Global(global)
}
Internal::Memory(idx) => {
let memory = instance
.memory_by_index(idx)
.expect("Due to validation memory should exists");
ExternVal::Memory(memory)
}
Internal::Table(idx) => {
let table = instance
.table_by_index(idx)
.expect("Due to validation table should exists");
ExternVal::Table(table)
}
};
instance.insert_export(field, extern_val);
}
Ok(instance)
}
/// Instantiate a module with given [external values][ExternVal] as imports.
///
/// See [new] for details.
///
/// [new]: #method.new
/// [ExternVal]: https://webassembly.github.io/spec/core/exec/runtime.html#syntax-externval
pub fn with_externvals<'a, 'i, I: Iterator<Item = &'i ExternVal>>(
loaded_module: &'a Module,
extern_vals: I,
) -> Result<NotStartedModuleRef<'a>, Error> {
let module = loaded_module.module();
let module_ref = ModuleInstance::alloc_module(loaded_module, extern_vals)?;
for element_segment in module
.elements_section()
.map(|es| es.entries())
.unwrap_or(&[])
{
let offset_val = match eval_init_expr(element_segment.offset(), &module_ref) {
RuntimeValue::I32(v) => v as u32,
_ => panic!("Due to validation elem segment offset should evaluate to i32"),
};
let table_inst = module_ref
.table_by_index(DEFAULT_TABLE_INDEX)
.expect("Due to validation default table should exists");
// This check is not only for bailing out early, but also to check the case when
// segment consist of 0 members.
if offset_val as u64 + element_segment.members().len() as u64
> table_inst.current_size() as u64
{
return Err(Error::Instantiation(
"elements segment does not fit".to_string(),
));
}
for (j, func_idx) in element_segment.members().into_iter().enumerate() {
let func = module_ref
.func_by_index(*func_idx)
.expect("Due to validation funcs from element segments should exists");
table_inst.set(offset_val + j as u32, Some(func))?;
}
}
for data_segment in module.data_section().map(|ds| ds.entries()).unwrap_or(&[]) {
let offset_val = match eval_init_expr(data_segment.offset(), &module_ref) {
RuntimeValue::I32(v) => v as u32,
_ => panic!("Due to validation data segment offset should evaluate to i32"),
};
let memory_inst = module_ref
.memory_by_index(DEFAULT_MEMORY_INDEX)
.expect("Due to validation default memory should exists");
memory_inst.set(offset_val, data_segment.value())?;
}
Ok(NotStartedModuleRef {
loaded_module,
instance: module_ref,
})
}
/// Instantiate a [module][`Module`].
///
/// Note that in case of successful instantiation this function returns a reference to
/// a module which `start` function is not called.
/// In order to complete instantiatiation `start` function must be called. However, there are
/// situations where you might need to do additional setup before calling `start` function.
/// For such sitations this separation might be useful.
///
/// See [`NotStartedModuleRef`] for details.
///
/// # Errors
///
/// Returns `Err` if the module cannot be instantiated.
///
/// This can happen if one of the imports can't
/// be satisfied (e.g module isn't registered in `imports` [resolver][`ImportResolver`]) or
/// there is a mismatch between requested import and provided (e.g. module requested memory with no
/// maximum size limit, however, was provided memory with the maximum size limit).
///
/// # Examples
///
/// ```rust
/// use wasmi::{ModuleInstance, ImportsBuilder, NopExternals};
/// # fn func() -> Result<(), ::wasmi::Error> {
/// # let module = wasmi::Module::from_buffer(&[0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00]).unwrap();
///
/// // ModuleInstance::new returns instance which `start` function isn't called.
/// let not_started = ModuleInstance::new(
/// &module,
/// &ImportsBuilder::default()
/// )?;
/// // Call `start` function if any.
/// let instance = not_started.run_start(&mut NopExternals)?;
///
/// # Ok(())
/// # }
/// ```
///
/// If you sure that the module doesn't have `start` function you can use [`assert_no_start`] to get
/// instantiated module without calling `start` function.
///
/// ```rust
/// use wasmi::{ModuleInstance, ImportsBuilder, NopExternals};
/// # fn func() -> Result<(), ::wasmi::Error> {
/// # let module = wasmi::Module::from_buffer(&[0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00]).unwrap();
///
/// // This will panic if the module actually contain `start` function.
/// let not_started = ModuleInstance::new(
/// &module,
/// &ImportsBuilder::default()
/// )?.assert_no_start();
///
/// # Ok(())
/// # }
/// ```
///
/// [`Module`]: struct.Module.html
/// [`NotStartedModuleRef`]: struct.NotStartedModuleRef.html
/// [`ImportResolver`]: trait.ImportResolver.html
/// [`assert_no_start`]: struct.NotStartedModuleRef.html#method.assert_no_start
pub fn new<'m, I: ImportResolver>(
loaded_module: &'m Module,
imports: &I,
) -> Result<NotStartedModuleRef<'m>, Error> {
let module = loaded_module.module();
let mut extern_vals = Vec::new();
for import_entry in module.import_section().map(|s| s.entries()).unwrap_or(&[]) {
let module_name = import_entry.module();
let field_name = import_entry.field();
let extern_val = match *import_entry.external() {
External::Function(fn_ty_idx) => {
let types = module.type_section().map(|s| s.types()).unwrap_or(&[]);
let &Type::Function(ref func_type) = types
.get(fn_ty_idx as usize)
.expect("Due to validation functions should have valid types");
let signature = Signature::from_elements(func_type);
let func = imports.resolve_func(module_name, field_name, &signature)?;
ExternVal::Func(func)
}
External::Table(ref table_type) => {
let table_descriptor = TableDescriptor::from_elements(table_type);
let table =
imports.resolve_table(module_name, field_name, &table_descriptor)?;
ExternVal::Table(table)
}
External::Memory(ref memory_type) => {
let memory_descriptor = MemoryDescriptor::from_elements(memory_type);
let memory =
imports.resolve_memory(module_name, field_name, &memory_descriptor)?;
ExternVal::Memory(memory)
}
External::Global(ref global_type) => {
let global_descriptor = GlobalDescriptor::from_elements(global_type);
let global =
imports.resolve_global(module_name, field_name, &global_descriptor)?;
ExternVal::Global(global)
}
};
extern_vals.push(extern_val);
}
Self::with_externvals(loaded_module, extern_vals.iter())
}
/// Invoke exported function by a name.
///
/// This function finds exported function by a name, and calls it with provided arguments and
/// external state.
///
/// # Errors
///
/// Returns `Err` if:
///
/// - there are no export with a given name or this export is not a function,
/// - given arguments doesn't match to function signature,
/// - trap occurred at the execution time,
///
/// # Examples
///
/// Invoke a function that takes two numbers and returns sum of them.
///
/// ```rust
/// # extern crate wasmi;
/// # extern crate wabt;
/// # use wasmi::{ModuleInstance, ImportsBuilder, NopExternals, RuntimeValue};
/// # fn main() {
/// # let wasm_binary: Vec<u8> = wabt::wat2wasm(
/// # r#"
/// # (module
/// # (func (export "add") (param i32 i32) (result i32)
/// # get_local 0
/// # get_local 1
/// # i32.add
/// # )
/// # )
/// # "#,
/// # ).expect("failed to parse wat");
/// # let module = wasmi::Module::from_buffer(&wasm_binary).expect("failed to load wasm");
/// # let instance = ModuleInstance::new(
/// # &module,
/// # &ImportsBuilder::default()
/// # ).expect("failed to instantiate wasm module").assert_no_start();
/// assert_eq!(
/// instance.invoke_export(
/// "add",
/// &[RuntimeValue::I32(5), RuntimeValue::I32(3)],
/// &mut NopExternals,
/// ).expect("failed to execute export"),
/// Some(RuntimeValue::I32(8)),
/// );
/// # }
/// ```
pub fn invoke_export<E: Externals>(
&self,
func_name: &str,
args: &[RuntimeValue],
externals: &mut E,
) -> Result<Option<RuntimeValue>, Error> {
let extern_val = self
.export_by_name(func_name)
.ok_or_else(|| Error::Function(format!("Module doesn't have export {}", func_name)))?;
let func_instance = match extern_val {
ExternVal::Func(func_instance) => func_instance,
unexpected => {
return Err(Error::Function(format!(
"Export {} is not a function, but {:?}",
func_name, unexpected
)));
}
};
FuncInstance::invoke(&func_instance, args, externals).map_err(|t| Error::Trap(t))
}
/// Find export by a name.
///
/// Returns `None` if there is no export with such name.
pub fn export_by_name(&self, name: &str) -> Option<ExternVal> {
self.exports.borrow().get(name).cloned()
}
}
/// Mostly instantiated [`ModuleRef`].
///
/// At this point memory segments and tables are copied. However, `start` function (if any) is not called.
/// To get [fully instantiated module instance][`ModuleRef`], [running `start` function][`run_start`] is required.
///
/// You can still access not fully initialized instance by calling [`not_started_instance`],
/// but keep in mind, that this is sort of escape hatch: module really might depend on initialization
/// done in `start` function. It's definitely not recommended to call any exports on [`ModuleRef`]
/// returned by this function.
///
/// If you sure, that there is no `start` function (e.g. because you created it without one), you can
/// call [`assert_no_start`] which returns [`ModuleRef`] without calling `start` function. However,
/// it will panic if module contains `start` function.
///
/// [`ModuleRef`]: struct.ModuleRef.html
/// [`run_start`]: #method.run_start
/// [`assert_no_start`]: #method.assert_no_start
/// [`not_started_instance`]: #method.not_started_instance
pub struct NotStartedModuleRef<'a> {
loaded_module: &'a Module,
instance: ModuleRef,
}
impl<'a> NotStartedModuleRef<'a> {
/// Returns not fully initialized instance.
///
/// To fully initialize the instance you need to call either [`run_start`] or
/// [`assert_no_start`]. See struct documentation for details.
///
/// [`NotStartedModuleRef`]: struct.NotStartedModuleRef.html
/// [`ModuleRef`]: struct.ModuleRef.html
/// [`run_start`]: #method.run_start
/// [`assert_no_start`]: #method.assert_no_start
pub fn not_started_instance(&self) -> &ModuleRef {
&self.instance
}
/// Executes `start` function (if any) and returns fully instantiated module.
///
/// # Errors
///
/// Returns `Err` if start function traps.
pub fn run_start<E: Externals>(self, state: &mut E) -> Result<ModuleRef, Trap> {
if let Some(start_fn_idx) = self.loaded_module.module().start_section() {
let start_func = self
.instance
.func_by_index(start_fn_idx)
.expect("Due to validation start function should exists");
FuncInstance::invoke(&start_func, &[], state)?;
}
Ok(self.instance)
}
/// Returns fully instantiated module without running `start` function.
///
/// # Panics
///
/// This function panics if original module contains `start` function.
pub fn assert_no_start(self) -> ModuleRef {
if self.loaded_module.module().start_section().is_some() {
panic!("assert_no_start called on module with `start` function");
}
self.instance
}
}
fn eval_init_expr(init_expr: &InitExpr, module: &ModuleInstance) -> RuntimeValue {
let code = init_expr.code();
debug_assert!(
code.len() == 2,
"Due to validation `code`.len() should be 2"
);
match code[0] {
Instruction::I32Const(v) => v.into(),
Instruction::I64Const(v) => v.into(),
Instruction::F32Const(v) => RuntimeValue::decode_f32(v),
Instruction::F64Const(v) => RuntimeValue::decode_f64(v),
Instruction::GetGlobal(idx) => {
let global = module
.global_by_index(idx)
.expect("Due to validation global should exists in module");
global.get()
}
_ => panic!("Due to validation init should be a const expr"),
}
}
fn match_limits(l1: &ResizableLimits, l2: &ResizableLimits) -> Result<(), Error> {
if l1.initial() < l2.initial() {
return Err(Error::Instantiation(format!(
"trying to import with limits l1.initial={} and l2.initial={}",
l1.initial(),
l2.initial()
)));
}
match (l1.maximum(), l2.maximum()) {
(_, None) => (),
(Some(m1), Some(m2)) if m1 <= m2 => (),
_ => {
return Err(Error::Instantiation(format!(
"trying to import with limits l1.max={:?} and l2.max={:?}",
l1.maximum(),
l2.maximum()
)));
}
}
Ok(())
}
pub fn check_limits(limits: &ResizableLimits) -> Result<(), Error> {
if let Some(maximum) = limits.maximum() {
if maximum < limits.initial() {
return Err(Error::Instantiation(format!(
"maximum limit {} is less than minimum {}",
maximum,
limits.initial()
)));
}
}
Ok(())
}
#[cfg(test)]
mod tests {
use super::{ExternVal, ModuleInstance};
use func::FuncInstance;
use imports::ImportsBuilder;
use tests::parse_wat;
use types::{Signature, ValueType};
#[should_panic]
#[test]
fn assert_no_start_panics_on_module_with_start() {
let module_with_start = parse_wat(
r#"
(module
(func $f)
(start $f))
"#,
);
ModuleInstance::new(&module_with_start, &ImportsBuilder::default())
.unwrap()
.assert_no_start();
}
#[test]
fn imports_provided_by_externvals() {
let module_with_single_import = parse_wat(
r#"
(module
(import "foo" "bar" (func))
)
"#,
);
assert!(ModuleInstance::with_externvals(
&module_with_single_import,
[ExternVal::Func(FuncInstance::alloc_host(
Signature::new(&[][..], None),
0
),)]
.iter(),
)
.is_ok());
// externval vector is longer than import count.
assert!(ModuleInstance::with_externvals(
&module_with_single_import,
[
ExternVal::Func(FuncInstance::alloc_host(Signature::new(&[][..], None), 0)),
ExternVal::Func(FuncInstance::alloc_host(Signature::new(&[][..], None), 1)),
]
.iter(),
)
.is_err());
// externval vector is shorter than import count.
assert!(ModuleInstance::with_externvals(&module_with_single_import, [].iter(),).is_err());
// externval vector has an unexpected type.
assert!(ModuleInstance::with_externvals(
&module_with_single_import,
[ExternVal::Func(FuncInstance::alloc_host(
Signature::new(&[][..], Some(ValueType::I32)),
0
),)]
.iter(),
)
.is_err());
}
}