wasmi/src/isa.rs

305 lines
6.0 KiB
Rust

//! An instruction set used by wasmi.
//!
//! The instruction set is mostly derived from Wasm. However,
//! there is a substantial difference.
//!
//! # Structured Stack Machine vs Plain One
//!
//! Wasm is a structured stack machine. Wasm encodes control flow in structures
//! similar to that commonly found in a programming languages
//! such as if, while. That contrasts to a plain stack machine which
//! encodes all control flow with goto-like instructions.
//!
//! Structured stack machine code aligns well with goals of Wasm,
//! namely providing fast validation of Wasm code and compilation to native code.
//!
//! Unfortunately, the downside of structured stack machine code is
//! that it is less convenient to interpret. For example, let's look at
//! the following example in hypothetical structured stack machine:
//!
//! ```plain
//! loop
//! ...
//! if_true_jump_to_end
//! ...
//! end
//! ```
//!
//! To execute `if_true_jump_to_end` , the interpreter needs to skip all instructions
//! until it reaches the *matching* `end`. That's quite inefficient compared
//! to a plain goto to the specific position.
//!
//! Because of this, the translation from the Wasm structured stack machine into a
//! plain one is taking place.
//!
//! # Locals
//!
//! In a plain stack machine local variables and arguments live on the stack. Instead of
//! accessing predifined locals slots in a plain stack machine locals are addressed relative
//! to the current stack pointer. Because of this instead of taking an index of a local
//! in {get,set,tee}_local operations, they take a relative depth as immediate. This works
//! because at each instruction we always know the current stack height.
//!
//! Roughly, the stack layout looks like this
//!
//! | caller arguments |
//! | - arg 1 |
//! | - arg 2 |
//! +------------------+
//! | callee locals |
//! | - var 1 |
//! | - var 2 |
//! +------------------+
//! | operands |
//! | - op 1 |
//! | - op 2 |
//! | | <-- current stack pointer
//! +------------------+
//!
//! # Differences from Wasm
//!
//! - There is no `nop` instruction.
//! - All control flow strucutres are flattened to plain gotos.
//! - Implicit returns via reaching function scope `End` are replaced with an explicit `return` instruction.
//! - Locals live on the value stack now.
//! - Load/store instructions doesn't take `align` parameter.
//! - *.const store value in straight encoding.
//! - Reserved immediates are ignored for `call_indirect`, `current_memory`, `grow_memory`.
//!
/// Should we keep a value before "discarding" a stack frame?
///
/// Note that this is a `enum` since Wasm doesn't support multiple return
/// values at the moment.
#[repr(u8)]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Keep {
None,
/// Pop one value from the yet-to-be-discarded stack frame to the
/// current stack frame.
Single,
}
/// Specifies how many values we should keep and how many we should drop.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct DropKeep {
pub drop: u32,
pub keep: Keep,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Target {
pub dst_pc: u32,
pub drop_keep: DropKeep,
}
#[allow(unused)] // TODO: Remove
#[derive(Debug, Clone, PartialEq)]
pub enum Instruction {
/// Push a local variable or an argument from the specified depth.
GetLocal(u32),
/// Pop a value and put it in at the specified depth.
SetLocal(u32),
/// Copy a value to the specified depth.
TeeLocal(u32),
/// Similar to the Wasm ones, but instead of a label depth
/// they specify direct PC.
Br(Target),
BrIfEqz(Target),
BrIfNez(Target),
/// br_table [t1 t2 t3 .. tn] tdefault
///
/// Pops the value from the stack. Then this value is used as an index
/// to the branch table.
///
/// However, the last target represents the default target. So if the index
/// is greater than length of the branch table, then the last index will be used.
///
/// Validation ensures that there should be at least one target.
BrTable(Box<[Target]>),
Unreachable,
Return(DropKeep),
Call(u32),
CallIndirect(u32),
Drop,
Select,
GetGlobal(u32),
SetGlobal(u32),
I32Load(u32),
I64Load(u32),
F32Load(u32),
F64Load(u32),
I32Load8S(u32),
I32Load8U(u32),
I32Load16S(u32),
I32Load16U(u32),
I64Load8S(u32),
I64Load8U(u32),
I64Load16S(u32),
I64Load16U(u32),
I64Load32S(u32),
I64Load32U(u32),
I32Store(u32),
I64Store(u32),
F32Store(u32),
F64Store(u32),
I32Store8(u32),
I32Store16(u32),
I64Store8(u32),
I64Store16(u32),
I64Store32(u32),
CurrentMemory,
GrowMemory,
I32Const(i32),
I64Const(i64),
F32Const(u32),
F64Const(u64),
I32Eqz,
I32Eq,
I32Ne,
I32LtS,
I32LtU,
I32GtS,
I32GtU,
I32LeS,
I32LeU,
I32GeS,
I32GeU,
I64Eqz,
I64Eq,
I64Ne,
I64LtS,
I64LtU,
I64GtS,
I64GtU,
I64LeS,
I64LeU,
I64GeS,
I64GeU,
F32Eq,
F32Ne,
F32Lt,
F32Gt,
F32Le,
F32Ge,
F64Eq,
F64Ne,
F64Lt,
F64Gt,
F64Le,
F64Ge,
I32Clz,
I32Ctz,
I32Popcnt,
I32Add,
I32Sub,
I32Mul,
I32DivS,
I32DivU,
I32RemS,
I32RemU,
I32And,
I32Or,
I32Xor,
I32Shl,
I32ShrS,
I32ShrU,
I32Rotl,
I32Rotr,
I64Clz,
I64Ctz,
I64Popcnt,
I64Add,
I64Sub,
I64Mul,
I64DivS,
I64DivU,
I64RemS,
I64RemU,
I64And,
I64Or,
I64Xor,
I64Shl,
I64ShrS,
I64ShrU,
I64Rotl,
I64Rotr,
F32Abs,
F32Neg,
F32Ceil,
F32Floor,
F32Trunc,
F32Nearest,
F32Sqrt,
F32Add,
F32Sub,
F32Mul,
F32Div,
F32Min,
F32Max,
F32Copysign,
F64Abs,
F64Neg,
F64Ceil,
F64Floor,
F64Trunc,
F64Nearest,
F64Sqrt,
F64Add,
F64Sub,
F64Mul,
F64Div,
F64Min,
F64Max,
F64Copysign,
I32WrapI64,
I32TruncSF32,
I32TruncUF32,
I32TruncSF64,
I32TruncUF64,
I64ExtendSI32,
I64ExtendUI32,
I64TruncSF32,
I64TruncUF32,
I64TruncSF64,
I64TruncUF64,
F32ConvertSI32,
F32ConvertUI32,
F32ConvertSI64,
F32ConvertUI64,
F32DemoteF64,
F64ConvertSI32,
F64ConvertUI32,
F64ConvertSI64,
F64ConvertUI64,
F64PromoteF32,
I32ReinterpretF32,
I64ReinterpretF64,
F32ReinterpretI32,
F64ReinterpretI64,
}
#[derive(Debug, Clone)]
pub struct Instructions {
pub code: Vec<Instruction>,
}