num-traits/src/complex.rs

601 lines
18 KiB
Rust
Raw Normal View History

2014-09-16 17:35:35 +00:00
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Complex numbers.
use std::fmt;
use std::ops::{Add, Div, Mul, Neg, Sub};
use {Zero, One, Num, Float};
2014-09-16 17:35:35 +00:00
// FIXME #1284: handle complex NaN & infinity etc. This
// probably doesn't map to C's _Complex correctly.
/// A complex number in Cartesian form.
#[derive(PartialEq, Copy, Clone, Hash, Debug)]
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
2014-09-16 17:35:35 +00:00
pub struct Complex<T> {
/// Real portion of the complex number
pub re: T,
/// Imaginary portion of the complex number
pub im: T
}
pub type Complex32 = Complex<f32>;
pub type Complex64 = Complex<f64>;
impl<T: Clone + Num> Complex<T> {
/// Create a new Complex
#[inline]
pub fn new(re: T, im: T) -> Complex<T> {
Complex { re: re, im: im }
}
/// Returns the square of the norm (since `T` doesn't necessarily
/// have a sqrt function), i.e. `re^2 + im^2`.
#[inline]
pub fn norm_sqr(&self) -> T {
self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone()
2014-09-16 17:35:35 +00:00
}
/// Multiplies `self` by the scalar `t`.
#[inline]
pub fn scale(&self, t: T) -> Complex<T> {
Complex::new(self.re.clone() * t.clone(), self.im.clone() * t)
2014-09-16 17:35:35 +00:00
}
/// Divides `self` by the scalar `t`.
#[inline]
pub fn unscale(&self, t: T) -> Complex<T> {
Complex::new(self.re.clone() / t.clone(), self.im.clone() / t)
2014-09-16 17:35:35 +00:00
}
}
2014-09-16 17:35:35 +00:00
impl<T: Clone + Num + Neg<Output = T>> Complex<T> {
/// Returns the complex conjugate. i.e. `re - i im`
#[inline]
pub fn conj(&self) -> Complex<T> {
Complex::new(self.re.clone(), -self.im.clone())
}
2014-09-16 17:35:35 +00:00
/// Returns `1/self`
#[inline]
pub fn inv(&self) -> Complex<T> {
let norm_sqr = self.norm_sqr();
Complex::new(self.re.clone() / norm_sqr.clone(),
-self.im.clone() / norm_sqr)
2014-09-16 17:35:35 +00:00
}
}
2015-01-07 20:09:44 +00:00
impl<T: Clone + Float> Complex<T> {
2014-09-16 17:35:35 +00:00
/// Calculate |self|
#[inline]
pub fn norm(&self) -> T {
self.re.clone().hypot(self.im.clone())
2014-09-16 17:35:35 +00:00
}
/// Calculate the principal Arg of self.
#[inline]
pub fn arg(&self) -> T {
self.im.clone().atan2(self.re.clone())
2014-09-16 17:35:35 +00:00
}
/// Convert to polar form (r, theta), such that `self = r * exp(i
/// * theta)`
#[inline]
pub fn to_polar(&self) -> (T, T) {
(self.norm(), self.arg())
}
/// Convert a polar representation into a complex number.
#[inline]
pub fn from_polar(r: &T, theta: &T) -> Complex<T> {
Complex::new(*r * theta.cos(), *r * theta.sin())
}
/// Computes e^(self), where e is the base of the natural logarithm.
#[inline]
pub fn exp(&self) -> Complex<T> {
// formula: e^(a + bi) = e^a * (cos(b) + isin(b))
let exp = self.re.exp();
Complex::new(exp * self.im.cos(), exp * self.im.sin())
}
/// Computes the sine of self.
#[inline]
pub fn sin(&self) -> Complex<T> {
// formula: sin(z) = (e^(iz) - e^(-iz)) / 2i
//let one = One::one();
let i = Complex::new(Zero::zero(), One::one());
let two_i = i + i;
let e_iz = (self*i).exp();
let e_neg_iz = e_iz.inv();
(e_iz - e_neg_iz) / two_i
}
/// Computes the cosine of self.
#[inline]
pub fn cos(&self) -> Complex<T> {
// formula: cos(z) = (e^(iz) + e^(-iz)) / 2
let i = Complex::new(Zero::zero(), One::one());
let two = Complex::one() + Complex::one();
let e_iz = (self*i).exp();
let e_neg_iz = e_iz.inv();
(e_iz + e_neg_iz) / two
}
/// Computes the tangent of self.
#[inline]
pub fn tan(&self) -> Complex<T> {
// formula: tan(z) = i (e^(-iz) - e^(iz)) / (e^(-iz) + e^(iz))
let i = Complex::new(Zero::zero(), One::one());
let e_iz = (self*i).exp();
let e_neg_iz = e_iz.inv();
i * (e_neg_iz - e_iz) / (e_neg_iz + e_iz)
}
/// Computes the hyperbolic sine of self.
#[inline]
pub fn sinh(&self) -> Complex<T> {
// formula: sinh(z) = (e^(z) - e^(-z)) / 2
let two = Complex::one() + Complex::one();
let e_z = self.exp();
let e_neg_z = e_z.inv();
(e_z - e_neg_z) / two
}
/// Computes the hyperbolic cosine of self.
#[inline]
pub fn cosh(&self) -> Complex<T> {
// formula: sinh(z) = (e^(z) + e^(-z)) / 2
let two = Complex::one() + Complex::one();
let e_z = self.exp();
let e_neg_z = e_z.inv();
(e_z + e_neg_z) / two
}
/// Computes the hyperbolic tangent of self.
#[inline]
pub fn tanh(&self) -> Complex<T> {
// formula: tanh(z) = (e^(z) - e^(-z)) / (e^(z) + e^(-z))
let e_z = self.exp();
let e_neg_z = e_z.inv();
(e_z - e_neg_z) / (e_z + e_neg_z)
}
2014-09-16 17:35:35 +00:00
}
macro_rules! forward_val_val_binop {
(impl $imp:ident, $method:ident) => {
2015-01-04 16:49:46 +00:00
impl<T: Clone + Num> $imp<Complex<T>> for Complex<T> {
type Output = Complex<T>;
#[inline]
fn $method(self, other: Complex<T>) -> Complex<T> {
(&self).$method(&other)
}
}
}
}
macro_rules! forward_ref_val_binop {
(impl $imp:ident, $method:ident) => {
2015-01-04 16:49:46 +00:00
impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> {
type Output = Complex<T>;
#[inline]
fn $method(self, other: Complex<T>) -> Complex<T> {
self.$method(&other)
}
}
}
}
macro_rules! forward_val_ref_binop {
(impl $imp:ident, $method:ident) => {
2015-01-04 16:49:46 +00:00
impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> {
type Output = Complex<T>;
#[inline]
fn $method(self, other: &Complex<T>) -> Complex<T> {
(&self).$method(other)
}
}
}
}
macro_rules! forward_all_binop {
(impl $imp:ident, $method:ident) => {
2014-12-19 02:01:24 +00:00
forward_val_val_binop!(impl $imp, $method);
forward_ref_val_binop!(impl $imp, $method);
forward_val_ref_binop!(impl $imp, $method);
};
}
2014-09-16 17:35:35 +00:00
/* arithmetic */
2014-12-19 02:01:24 +00:00
forward_all_binop!(impl Add, add);
2014-09-16 17:35:35 +00:00
// (a + i b) + (c + i d) == (a + c) + i (b + d)
2015-01-04 16:49:46 +00:00
impl<'a, 'b, T: Clone + Num> Add<&'b Complex<T>> for &'a Complex<T> {
type Output = Complex<T>;
2014-09-16 17:35:35 +00:00
#[inline]
fn add(self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re.clone() + other.re.clone(),
self.im.clone() + other.im.clone())
2014-09-16 17:35:35 +00:00
}
}
2014-12-19 02:01:24 +00:00
forward_all_binop!(impl Sub, sub);
2014-09-16 17:35:35 +00:00
// (a + i b) - (c + i d) == (a - c) + i (b - d)
2015-01-04 16:49:46 +00:00
impl<'a, 'b, T: Clone + Num> Sub<&'b Complex<T>> for &'a Complex<T> {
type Output = Complex<T>;
2014-09-16 17:35:35 +00:00
#[inline]
fn sub(self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re.clone() - other.re.clone(),
self.im.clone() - other.im.clone())
2014-09-16 17:35:35 +00:00
}
}
2014-12-19 02:01:24 +00:00
forward_all_binop!(impl Mul, mul);
2014-09-16 17:35:35 +00:00
// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
2015-01-04 16:49:46 +00:00
impl<'a, 'b, T: Clone + Num> Mul<&'b Complex<T>> for &'a Complex<T> {
type Output = Complex<T>;
2014-09-16 17:35:35 +00:00
#[inline]
fn mul(self, other: &Complex<T>) -> Complex<T> {
Complex::new(self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(),
self.re.clone() * other.im.clone() + self.im.clone() * other.re.clone())
2014-09-16 17:35:35 +00:00
}
}
2014-12-19 02:01:24 +00:00
forward_all_binop!(impl Div, div);
2014-09-16 17:35:35 +00:00
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
2015-01-04 16:49:46 +00:00
impl<'a, 'b, T: Clone + Num> Div<&'b Complex<T>> for &'a Complex<T> {
type Output = Complex<T>;
2014-09-16 17:35:35 +00:00
#[inline]
fn div(self, other: &Complex<T>) -> Complex<T> {
2014-09-16 17:35:35 +00:00
let norm_sqr = other.norm_sqr();
Complex::new((self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone()) / norm_sqr.clone(),
(self.im.clone() * other.re.clone() - self.re.clone() * other.im.clone()) / norm_sqr)
2014-09-16 17:35:35 +00:00
}
}
impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> {
2015-01-04 16:49:46 +00:00
type Output = Complex<T>;
2014-09-16 17:35:35 +00:00
#[inline]
2014-12-21 10:41:03 +00:00
fn neg(self) -> Complex<T> { -&self }
}
impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> {
2015-01-04 16:49:46 +00:00
type Output = Complex<T>;
2014-12-21 10:41:03 +00:00
#[inline]
fn neg(self) -> Complex<T> {
Complex::new(-self.re.clone(), -self.im.clone())
2014-09-16 17:35:35 +00:00
}
}
/* constants */
impl<T: Clone + Num> Zero for Complex<T> {
#[inline]
fn zero() -> Complex<T> {
Complex::new(Zero::zero(), Zero::zero())
}
#[inline]
fn is_zero(&self) -> bool {
self.re.is_zero() && self.im.is_zero()
}
}
impl<T: Clone + Num> One for Complex<T> {
#[inline]
fn one() -> Complex<T> {
Complex::new(One::one(), Zero::zero())
}
}
/* string conversions */
impl<T> fmt::Display for Complex<T> where
T: fmt::Display + Num + PartialOrd + Clone
{
2014-09-16 17:35:35 +00:00
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.im < Zero::zero() {
write!(f, "{}-{}i", self.re, T::zero() - self.im.clone())
2014-09-16 17:35:35 +00:00
} else {
write!(f, "{}+{}i", self.re, self.im)
}
}
}
#[cfg(test)]
mod test {
2014-11-04 14:24:20 +00:00
#![allow(non_upper_case_globals)]
2014-09-16 17:35:35 +00:00
use super::{Complex64, Complex};
2014-12-09 14:48:37 +00:00
use std::f64;
2014-09-16 17:35:35 +00:00
use {Zero, One, Float};
2014-10-10 13:50:22 +00:00
pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
pub const _1_1i : Complex64 = Complex { re: 1.0, im: 1.0 };
pub const _0_1i : Complex64 = Complex { re: 0.0, im: 1.0 };
pub const _neg1_1i : Complex64 = Complex { re: -1.0, im: 1.0 };
pub const _05_05i : Complex64 = Complex { re: 0.5, im: 0.5 };
pub const all_consts : [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
2014-09-16 17:35:35 +00:00
#[test]
fn test_consts() {
// check our constants are what Complex::new creates
fn test(c : Complex64, r : f64, i: f64) {
assert_eq!(c, Complex::new(r,i));
}
test(_0_0i, 0.0, 0.0);
test(_1_0i, 1.0, 0.0);
test(_1_1i, 1.0, 1.0);
test(_neg1_1i, -1.0, 1.0);
test(_05_05i, 0.5, 0.5);
assert_eq!(_0_0i, Zero::zero());
assert_eq!(_1_0i, One::one());
}
#[test]
2014-10-10 13:56:15 +00:00
#[cfg_attr(target_arch = "x86", ignore)]
2014-09-16 17:35:35 +00:00
// FIXME #7158: (maybe?) currently failing on x86.
fn test_norm() {
fn test(c: Complex64, ns: f64) {
assert_eq!(c.norm_sqr(), ns);
assert_eq!(c.norm(), ns.sqrt())
}
test(_0_0i, 0.0);
test(_1_0i, 1.0);
test(_1_1i, 2.0);
test(_neg1_1i, 2.0);
test(_05_05i, 0.5);
}
#[test]
fn test_scale_unscale() {
assert_eq!(_05_05i.scale(2.0), _1_1i);
assert_eq!(_1_1i.unscale(2.0), _05_05i);
for &c in all_consts.iter() {
assert_eq!(c.scale(2.0).unscale(2.0), c);
}
}
#[test]
fn test_conj() {
for &c in all_consts.iter() {
assert_eq!(c.conj(), Complex::new(c.re, -c.im));
assert_eq!(c.conj().conj(), c);
}
}
#[test]
fn test_inv() {
assert_eq!(_1_1i.inv(), _05_05i.conj());
assert_eq!(_1_0i.inv(), _1_0i.inv());
}
#[test]
#[should_panic]
2014-09-16 17:35:35 +00:00
fn test_divide_by_zero_natural() {
2015-01-09 11:36:03 +00:00
let n = Complex::new(2, 3);
2014-09-16 17:35:35 +00:00
let d = Complex::new(0, 0);
let _x = n / d;
}
#[test]
#[should_panic]
2014-09-16 17:35:35 +00:00
#[ignore]
fn test_inv_zero() {
// FIXME #5736: should this really fail, or just NaN?
_0_0i.inv();
}
#[test]
fn test_arg() {
fn test(c: Complex64, arg: f64) {
assert!((c.arg() - arg).abs() < 1.0e-6)
}
test(_1_0i, 0.0);
2014-12-09 14:48:37 +00:00
test(_1_1i, 0.25 * f64::consts::PI);
test(_neg1_1i, 0.75 * f64::consts::PI);
test(_05_05i, 0.25 * f64::consts::PI);
2014-09-16 17:35:35 +00:00
}
#[test]
fn test_polar_conv() {
fn test(c: Complex64) {
let (r, theta) = c.to_polar();
assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6);
}
for &c in all_consts.iter() { test(c); }
}
fn very_close(a: Complex64, b: Complex64) -> bool {
// returns true if a and b are reasonably close
(a-b).norm() < 1e-10
}
#[test]
fn test_exp() {
assert_eq!(_1_0i.exp(), Complex::new(f64::consts::E, 0.0));
assert_eq!(_0_0i.exp(), _1_0i);
assert_eq!(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()));
assert!(very_close(_05_05i.exp()*_05_05i.exp(), _1_1i.exp()));
assert!(very_close(Complex::new(0.0, -f64::consts::PI).exp(), _1_0i.scale(-1.0)));
for &c in all_consts.iter() {
assert!(very_close(c.exp(), (c + Complex::new(0.0, f64::consts::PI*2.0)).exp()));
}
}
#[test]
fn test_sin() {
assert_eq!(_0_0i.sin(), _0_0i);
assert!(very_close(_1_0i.scale(f64::consts::PI*2.0).sin(), _0_0i));
assert_eq!(_0_1i.sin(), _0_1i.scale(1.0.sinh()));
for &c in all_consts.iter() {
assert!(very_close(c.conj().sin(), c.sin().conj()));
assert!(very_close(c.scale(-1.0).sin(), c.sin().scale(-1.0)));
}
}
#[test]
fn test_cos() {
assert_eq!(_0_0i.cos(), _1_0i);
assert!(very_close(_1_0i.scale(f64::consts::PI*2.0).cos(), _1_0i));
assert_eq!(_0_1i.cos(), _1_0i.scale(1.0.cosh()));
for &c in all_consts.iter() {
assert!(very_close(c.conj().cos(), c.cos().conj()));
assert!(very_close(c.scale(-1.0).cos(), c.cos()));
}
}
#[test]
fn test_tan() {
assert_eq!(_0_0i.tan(), _0_0i);
assert!(very_close(_1_0i.scale(f64::consts::PI).tan(), _0_0i));
for &c in all_consts.iter() {
assert!(very_close(c.conj().tan(), c.tan().conj()));
assert!(very_close(c.scale(-1.0).tan(), c.tan().scale(-1.0)));
assert!(very_close(c.tan(), c.sin()/c.cos()));
}
}
#[test]
fn test_sinh() {
assert_eq!(_0_0i.sinh(), _0_0i);
assert_eq!(_1_0i.sinh(), _1_0i.scale((f64::consts::E - 1.0/f64::consts::E)/2.0));
assert_eq!(_0_1i.sinh(), _0_1i.scale(1.0.sin()));
for &c in all_consts.iter() {
assert!(very_close(c.conj().sinh(), c.sinh().conj()));
assert!(very_close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0)));
}
}
#[test]
fn test_cosh() {
assert_eq!(_0_0i.cosh(), _1_0i);
assert_eq!(_1_0i.cosh(), _1_0i.scale((f64::consts::E + 1.0/f64::consts::E)/2.0));
assert_eq!(_0_1i.cosh(), _1_0i.scale(1.0.cos()));
for &c in all_consts.iter() {
assert!(very_close(c.conj().cosh(), c.cosh().conj()));
assert!(very_close(c.scale(-1.0).cosh(), c.cosh()));
}
}
#[test]
fn test_tanh() {
assert_eq!(_0_0i.tanh(), _0_0i);
assert!(very_close(_1_0i.tanh(), _1_0i.scale((f64::consts::E.powi(2) - 1.0)/(f64::consts::E.powi(2) + 1.0))));
assert!(very_close(_0_1i.tanh(), _0_1i.scale(1.0.tan())));
for &c in all_consts.iter() {
assert!(very_close(c.conj().tanh(), c.conj().tanh()));
assert!(very_close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0)));
assert!(very_close(c.tanh(), c.sinh()/c.cosh()));
}
}
2014-09-16 17:35:35 +00:00
mod arith {
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts};
use Zero;
2014-09-16 17:35:35 +00:00
#[test]
fn test_add() {
assert_eq!(_05_05i + _05_05i, _1_1i);
assert_eq!(_0_1i + _1_0i, _1_1i);
assert_eq!(_1_0i + _neg1_1i, _0_1i);
for &c in all_consts.iter() {
assert_eq!(_0_0i + c, c);
assert_eq!(c + _0_0i, c);
}
}
#[test]
fn test_sub() {
assert_eq!(_05_05i - _05_05i, _0_0i);
assert_eq!(_0_1i - _1_0i, _neg1_1i);
assert_eq!(_0_1i - _neg1_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c - _0_0i, c);
assert_eq!(c - c, _0_0i);
}
}
#[test]
fn test_mul() {
assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2.0));
assert_eq!(_1_1i * _0_1i, _neg1_1i);
// i^2 & i^4
assert_eq!(_0_1i * _0_1i, -_1_0i);
assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(c * _1_0i, c);
assert_eq!(_1_0i * c, c);
}
}
#[test]
fn test_div() {
assert_eq!(_neg1_1i / _0_1i, _1_1i);
for &c in all_consts.iter() {
if c != Zero::zero() {
assert_eq!(c / c, _1_0i);
}
}
}
#[test]
fn test_neg() {
assert_eq!(-_1_0i + _0_1i, _neg1_1i);
assert_eq!((-_0_1i) * _0_1i, _1_0i);
for &c in all_consts.iter() {
assert_eq!(-(-c), c);
}
}
}
#[test]
fn test_to_string() {
fn test(c : Complex64, s: String) {
assert_eq!(c.to_string(), s);
}
test(_0_0i, "0+0i".to_string());
test(_1_0i, "1+0i".to_string());
test(_0_1i, "0+1i".to_string());
test(_1_1i, "1+1i".to_string());
test(_neg1_1i, "-1+1i".to_string());
test(-_neg1_1i, "1-1i".to_string());
test(_05_05i, "0.5+0.5i".to_string());
}
#[test]
fn test_hash() {
2015-01-09 11:36:03 +00:00
2014-09-16 17:35:35 +00:00
let a = Complex::new(0i32, 0i32);
let b = Complex::new(1i32, 0i32);
let c = Complex::new(0i32, 1i32);
2015-01-09 11:36:03 +00:00
assert!(::hash(&a) != ::hash(&b));
assert!(::hash(&b) != ::hash(&c));
assert!(::hash(&c) != ::hash(&a));
2014-09-16 17:35:35 +00:00
}
}