2014-09-16 17:35:35 +00:00
|
|
|
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
|
|
|
|
|
|
|
|
|
|
|
//! Complex numbers.
|
|
|
|
|
|
|
|
use std::fmt;
|
|
|
|
use std::num::{Zero, One, ToStrRadix};
|
|
|
|
|
|
|
|
// FIXME #1284: handle complex NaN & infinity etc. This
|
|
|
|
// probably doesn't map to C's _Complex correctly.
|
|
|
|
|
|
|
|
/// A complex number in Cartesian form.
|
|
|
|
#[deriving(PartialEq, Clone, Hash)]
|
|
|
|
pub struct Complex<T> {
|
|
|
|
/// Real portion of the complex number
|
|
|
|
pub re: T,
|
|
|
|
/// Imaginary portion of the complex number
|
|
|
|
pub im: T
|
|
|
|
}
|
|
|
|
|
|
|
|
pub type Complex32 = Complex<f32>;
|
|
|
|
pub type Complex64 = Complex<f64>;
|
|
|
|
|
|
|
|
impl<T: Clone + Num> Complex<T> {
|
|
|
|
/// Create a new Complex
|
|
|
|
#[inline]
|
|
|
|
pub fn new(re: T, im: T) -> Complex<T> {
|
|
|
|
Complex { re: re, im: im }
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns the square of the norm (since `T` doesn't necessarily
|
|
|
|
/// have a sqrt function), i.e. `re^2 + im^2`.
|
|
|
|
#[inline]
|
|
|
|
pub fn norm_sqr(&self) -> T {
|
|
|
|
self.re * self.re + self.im * self.im
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Returns the complex conjugate. i.e. `re - i im`
|
|
|
|
#[inline]
|
|
|
|
pub fn conj(&self) -> Complex<T> {
|
|
|
|
Complex::new(self.re.clone(), -self.im)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Multiplies `self` by the scalar `t`.
|
|
|
|
#[inline]
|
|
|
|
pub fn scale(&self, t: T) -> Complex<T> {
|
|
|
|
Complex::new(self.re * t, self.im * t)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Divides `self` by the scalar `t`.
|
|
|
|
#[inline]
|
|
|
|
pub fn unscale(&self, t: T) -> Complex<T> {
|
|
|
|
Complex::new(self.re / t, self.im / t)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Returns `1/self`
|
|
|
|
#[inline]
|
|
|
|
pub fn inv(&self) -> Complex<T> {
|
|
|
|
let norm_sqr = self.norm_sqr();
|
|
|
|
Complex::new(self.re / norm_sqr,
|
|
|
|
-self.im / norm_sqr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: Clone + FloatMath> Complex<T> {
|
|
|
|
/// Calculate |self|
|
|
|
|
#[inline]
|
|
|
|
pub fn norm(&self) -> T {
|
|
|
|
self.re.hypot(self.im)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: Clone + FloatMath> Complex<T> {
|
|
|
|
/// Calculate the principal Arg of self.
|
|
|
|
#[inline]
|
|
|
|
pub fn arg(&self) -> T {
|
|
|
|
self.im.atan2(self.re)
|
|
|
|
}
|
|
|
|
/// Convert to polar form (r, theta), such that `self = r * exp(i
|
|
|
|
/// * theta)`
|
|
|
|
#[inline]
|
|
|
|
pub fn to_polar(&self) -> (T, T) {
|
|
|
|
(self.norm(), self.arg())
|
|
|
|
}
|
|
|
|
/// Convert a polar representation into a complex number.
|
|
|
|
#[inline]
|
|
|
|
pub fn from_polar(r: &T, theta: &T) -> Complex<T> {
|
|
|
|
Complex::new(*r * theta.cos(), *r * theta.sin())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* arithmetic */
|
|
|
|
// (a + i b) + (c + i d) == (a + c) + i (b + d)
|
|
|
|
impl<T: Clone + Num> Add<Complex<T>, Complex<T>> for Complex<T> {
|
|
|
|
#[inline]
|
|
|
|
fn add(&self, other: &Complex<T>) -> Complex<T> {
|
|
|
|
Complex::new(self.re + other.re, self.im + other.im)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// (a + i b) - (c + i d) == (a - c) + i (b - d)
|
|
|
|
impl<T: Clone + Num> Sub<Complex<T>, Complex<T>> for Complex<T> {
|
|
|
|
#[inline]
|
|
|
|
fn sub(&self, other: &Complex<T>) -> Complex<T> {
|
|
|
|
Complex::new(self.re - other.re, self.im - other.im)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c)
|
|
|
|
impl<T: Clone + Num> Mul<Complex<T>, Complex<T>> for Complex<T> {
|
|
|
|
#[inline]
|
|
|
|
fn mul(&self, other: &Complex<T>) -> Complex<T> {
|
|
|
|
Complex::new(self.re*other.re - self.im*other.im,
|
|
|
|
self.re*other.im + self.im*other.re)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d)
|
|
|
|
// == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)]
|
|
|
|
impl<T: Clone + Num> Div<Complex<T>, Complex<T>> for Complex<T> {
|
|
|
|
#[inline]
|
|
|
|
fn div(&self, other: &Complex<T>) -> Complex<T> {
|
|
|
|
let norm_sqr = other.norm_sqr();
|
|
|
|
Complex::new((self.re*other.re + self.im*other.im) / norm_sqr,
|
|
|
|
(self.im*other.re - self.re*other.im) / norm_sqr)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: Clone + Num> Neg<Complex<T>> for Complex<T> {
|
|
|
|
#[inline]
|
|
|
|
fn neg(&self) -> Complex<T> {
|
|
|
|
Complex::new(-self.re, -self.im)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* constants */
|
|
|
|
impl<T: Clone + Num> Zero for Complex<T> {
|
|
|
|
#[inline]
|
|
|
|
fn zero() -> Complex<T> {
|
|
|
|
Complex::new(Zero::zero(), Zero::zero())
|
|
|
|
}
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn is_zero(&self) -> bool {
|
|
|
|
self.re.is_zero() && self.im.is_zero()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: Clone + Num> One for Complex<T> {
|
|
|
|
#[inline]
|
|
|
|
fn one() -> Complex<T> {
|
|
|
|
Complex::new(One::one(), Zero::zero())
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* string conversions */
|
|
|
|
impl<T: fmt::Show + Num + PartialOrd> fmt::Show for Complex<T> {
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
|
|
if self.im < Zero::zero() {
|
|
|
|
write!(f, "{}-{}i", self.re, -self.im)
|
|
|
|
} else {
|
|
|
|
write!(f, "{}+{}i", self.re, self.im)
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T: ToStrRadix + Num + PartialOrd> ToStrRadix for Complex<T> {
|
|
|
|
fn to_str_radix(&self, radix: uint) -> String {
|
|
|
|
if self.im < Zero::zero() {
|
|
|
|
format!("{}-{}i",
|
|
|
|
self.re.to_str_radix(radix),
|
|
|
|
(-self.im).to_str_radix(radix))
|
|
|
|
} else {
|
|
|
|
format!("{}+{}i",
|
|
|
|
self.re.to_str_radix(radix),
|
|
|
|
self.im.to_str_radix(radix))
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
mod test {
|
|
|
|
#![allow(non_uppercase_statics)]
|
|
|
|
|
|
|
|
use super::{Complex64, Complex};
|
|
|
|
use std::num::{Zero, One, Float};
|
|
|
|
use std::hash::hash;
|
|
|
|
|
2014-10-10 13:50:22 +00:00
|
|
|
pub const _0_0i : Complex64 = Complex { re: 0.0, im: 0.0 };
|
|
|
|
pub const _1_0i : Complex64 = Complex { re: 1.0, im: 0.0 };
|
|
|
|
pub const _1_1i : Complex64 = Complex { re: 1.0, im: 1.0 };
|
|
|
|
pub const _0_1i : Complex64 = Complex { re: 0.0, im: 1.0 };
|
|
|
|
pub const _neg1_1i : Complex64 = Complex { re: -1.0, im: 1.0 };
|
|
|
|
pub const _05_05i : Complex64 = Complex { re: 0.5, im: 0.5 };
|
|
|
|
pub const all_consts : [Complex64, .. 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i];
|
2014-09-16 17:35:35 +00:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_consts() {
|
|
|
|
// check our constants are what Complex::new creates
|
|
|
|
fn test(c : Complex64, r : f64, i: f64) {
|
|
|
|
assert_eq!(c, Complex::new(r,i));
|
|
|
|
}
|
|
|
|
test(_0_0i, 0.0, 0.0);
|
|
|
|
test(_1_0i, 1.0, 0.0);
|
|
|
|
test(_1_1i, 1.0, 1.0);
|
|
|
|
test(_neg1_1i, -1.0, 1.0);
|
|
|
|
test(_05_05i, 0.5, 0.5);
|
|
|
|
|
|
|
|
assert_eq!(_0_0i, Zero::zero());
|
|
|
|
assert_eq!(_1_0i, One::one());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
2014-10-10 13:56:15 +00:00
|
|
|
#[cfg_attr(target_arch = "x86", ignore)]
|
2014-09-16 17:35:35 +00:00
|
|
|
// FIXME #7158: (maybe?) currently failing on x86.
|
|
|
|
fn test_norm() {
|
|
|
|
fn test(c: Complex64, ns: f64) {
|
|
|
|
assert_eq!(c.norm_sqr(), ns);
|
|
|
|
assert_eq!(c.norm(), ns.sqrt())
|
|
|
|
}
|
|
|
|
test(_0_0i, 0.0);
|
|
|
|
test(_1_0i, 1.0);
|
|
|
|
test(_1_1i, 2.0);
|
|
|
|
test(_neg1_1i, 2.0);
|
|
|
|
test(_05_05i, 0.5);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_scale_unscale() {
|
|
|
|
assert_eq!(_05_05i.scale(2.0), _1_1i);
|
|
|
|
assert_eq!(_1_1i.unscale(2.0), _05_05i);
|
|
|
|
for &c in all_consts.iter() {
|
|
|
|
assert_eq!(c.scale(2.0).unscale(2.0), c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_conj() {
|
|
|
|
for &c in all_consts.iter() {
|
|
|
|
assert_eq!(c.conj(), Complex::new(c.re, -c.im));
|
|
|
|
assert_eq!(c.conj().conj(), c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_inv() {
|
|
|
|
assert_eq!(_1_1i.inv(), _05_05i.conj());
|
|
|
|
assert_eq!(_1_0i.inv(), _1_0i.inv());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
#[should_fail]
|
|
|
|
fn test_divide_by_zero_natural() {
|
|
|
|
let n = Complex::new(2i, 3i);
|
|
|
|
let d = Complex::new(0, 0);
|
|
|
|
let _x = n / d;
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
#[should_fail]
|
|
|
|
#[ignore]
|
|
|
|
fn test_inv_zero() {
|
|
|
|
// FIXME #5736: should this really fail, or just NaN?
|
|
|
|
_0_0i.inv();
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_arg() {
|
|
|
|
fn test(c: Complex64, arg: f64) {
|
|
|
|
assert!((c.arg() - arg).abs() < 1.0e-6)
|
|
|
|
}
|
|
|
|
test(_1_0i, 0.0);
|
|
|
|
test(_1_1i, 0.25 * Float::pi());
|
|
|
|
test(_neg1_1i, 0.75 * Float::pi());
|
|
|
|
test(_05_05i, 0.25 * Float::pi());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_polar_conv() {
|
|
|
|
fn test(c: Complex64) {
|
|
|
|
let (r, theta) = c.to_polar();
|
|
|
|
assert!((c - Complex::from_polar(&r, &theta)).norm() < 1e-6);
|
|
|
|
}
|
|
|
|
for &c in all_consts.iter() { test(c); }
|
|
|
|
}
|
|
|
|
|
|
|
|
mod arith {
|
|
|
|
use super::{_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i, _05_05i, all_consts};
|
|
|
|
use std::num::Zero;
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_add() {
|
|
|
|
assert_eq!(_05_05i + _05_05i, _1_1i);
|
|
|
|
assert_eq!(_0_1i + _1_0i, _1_1i);
|
|
|
|
assert_eq!(_1_0i + _neg1_1i, _0_1i);
|
|
|
|
|
|
|
|
for &c in all_consts.iter() {
|
|
|
|
assert_eq!(_0_0i + c, c);
|
|
|
|
assert_eq!(c + _0_0i, c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_sub() {
|
|
|
|
assert_eq!(_05_05i - _05_05i, _0_0i);
|
|
|
|
assert_eq!(_0_1i - _1_0i, _neg1_1i);
|
|
|
|
assert_eq!(_0_1i - _neg1_1i, _1_0i);
|
|
|
|
|
|
|
|
for &c in all_consts.iter() {
|
|
|
|
assert_eq!(c - _0_0i, c);
|
|
|
|
assert_eq!(c - c, _0_0i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_mul() {
|
|
|
|
assert_eq!(_05_05i * _05_05i, _0_1i.unscale(2.0));
|
|
|
|
assert_eq!(_1_1i * _0_1i, _neg1_1i);
|
|
|
|
|
|
|
|
// i^2 & i^4
|
|
|
|
assert_eq!(_0_1i * _0_1i, -_1_0i);
|
|
|
|
assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i);
|
|
|
|
|
|
|
|
for &c in all_consts.iter() {
|
|
|
|
assert_eq!(c * _1_0i, c);
|
|
|
|
assert_eq!(_1_0i * c, c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#[test]
|
|
|
|
fn test_div() {
|
|
|
|
assert_eq!(_neg1_1i / _0_1i, _1_1i);
|
|
|
|
for &c in all_consts.iter() {
|
|
|
|
if c != Zero::zero() {
|
|
|
|
assert_eq!(c / c, _1_0i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#[test]
|
|
|
|
fn test_neg() {
|
|
|
|
assert_eq!(-_1_0i + _0_1i, _neg1_1i);
|
|
|
|
assert_eq!((-_0_1i) * _0_1i, _1_0i);
|
|
|
|
for &c in all_consts.iter() {
|
|
|
|
assert_eq!(-(-c), c);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_to_string() {
|
|
|
|
fn test(c : Complex64, s: String) {
|
|
|
|
assert_eq!(c.to_string(), s);
|
|
|
|
}
|
|
|
|
test(_0_0i, "0+0i".to_string());
|
|
|
|
test(_1_0i, "1+0i".to_string());
|
|
|
|
test(_0_1i, "0+1i".to_string());
|
|
|
|
test(_1_1i, "1+1i".to_string());
|
|
|
|
test(_neg1_1i, "-1+1i".to_string());
|
|
|
|
test(-_neg1_1i, "1-1i".to_string());
|
|
|
|
test(_05_05i, "0.5+0.5i".to_string());
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_hash() {
|
|
|
|
let a = Complex::new(0i32, 0i32);
|
|
|
|
let b = Complex::new(1i32, 0i32);
|
|
|
|
let c = Complex::new(0i32, 1i32);
|
|
|
|
assert!(hash(&a) != hash(&b));
|
|
|
|
assert!(hash(&b) != hash(&c));
|
|
|
|
assert!(hash(&c) != hash(&a));
|
|
|
|
}
|
|
|
|
}
|