num-traits/src/lib.rs

150 lines
4.3 KiB
Rust
Raw Normal View History

2014-09-16 17:35:35 +00:00
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Simple numerics.
//!
//! This crate contains arbitrary-sized integer, rational, and complex types.
//!
//! ## Example
//!
//! This example uses the BigRational type and [Newton's method][newt] to
//! approximate a square root to arbitrary precision:
//!
//! ```
//! extern crate num;
//!
2015-04-03 17:26:37 +00:00
//! use num::FromPrimitive;
2014-09-16 17:35:35 +00:00
//! use num::bigint::BigInt;
//! use num::rational::{Ratio, BigRational};
//!
2015-01-09 11:36:03 +00:00
//! fn approx_sqrt(number: u64, iterations: usize) -> BigRational {
2014-09-16 17:35:35 +00:00
//! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap());
//! let mut approx = start.clone();
//!
2015-03-22 17:43:11 +00:00
//! for _ in 0..iterations {
//! approx = (&approx + (&start / &approx)) /
2014-09-16 17:35:35 +00:00
//! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap());
//! }
//!
//! approx
//! }
//!
//! fn main() {
//! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416
//! }
//! ```
//!
//! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
#![doc(html_logo_url = "http://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "http://www.rust-lang.org/favicon.ico",
2014-12-23 17:50:53 +00:00
html_root_url = "http://doc.rust-lang.org/num/",
2014-09-16 17:35:35 +00:00
html_playground_url = "http://play.rust-lang.org/")]
2015-03-26 00:48:52 +00:00
extern crate rustc_serialize;
2015-02-05 16:20:16 +00:00
extern crate rand;
2014-09-16 17:35:35 +00:00
pub use bigint::{BigInt, BigUint};
pub use rational::{Rational, BigRational};
pub use complex::Complex;
pub use integer::Integer;
pub use iter::{range, range_inclusive, range_step, range_step_inclusive};
pub use traits::{Num, Zero, One, Signed, Unsigned, Bounded,
Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv,
2015-05-26 13:03:34 +00:00
PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast};
2014-09-16 17:35:35 +00:00
2015-01-09 11:36:03 +00:00
#[cfg(test)] use std::hash;
use std::ops::{Mul};
2014-09-16 17:35:35 +00:00
pub mod bigint;
pub mod complex;
pub mod integer;
pub mod iter;
pub mod traits;
2014-09-16 17:35:35 +00:00
pub mod rational;
/// Returns the additive identity, `0`.
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
/// Returns the multiplicative identity, `1`.
#[inline(always)] pub fn one<T: One>() -> T { One::one() }
/// Computes the absolute value.
///
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
///
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
#[inline(always)]
pub fn abs<T: Signed>(value: T) -> T {
value.abs()
}
/// The positive difference of two numbers.
///
/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
/// between `x` and `y` is returned.
#[inline(always)]
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
x.abs_sub(&y)
}
/// Returns the sign of the number.
///
/// For `f32` and `f64`:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
///
/// For signed integers:
///
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use num;
///
/// assert_eq!(num::pow(2i8, 4), 16);
/// assert_eq!(num::pow(6u8, 3), 216);
/// ```
#[inline]
2015-01-09 11:36:03 +00:00
pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
if exp == 1 { base }
else {
let mut acc = one::<T>();
while exp > 0 {
if (exp & 1) == 1 {
acc = acc * base.clone();
}
// avoid overflow if we won't need it
if exp > 1 {
base = base.clone() * base;
}
exp = exp >> 1;
}
acc
}
}
2015-01-09 11:36:03 +00:00
#[cfg(test)]
2015-02-20 18:26:13 +00:00
fn hash<T: hash::Hash>(x: &T) -> u64 {
use std::hash::Hasher;
let mut hasher = hash::SipHasher::new();
x.hash(&mut hasher);
hasher.finish()
2015-01-09 11:36:03 +00:00
}