1414 lines
42 KiB
Rust
1414 lines
42 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Rational numbers
|
|
#![doc(html_logo_url = "https://rust-num.github.io/num/rust-logo-128x128-blk-v2.png",
|
|
html_favicon_url = "https://rust-num.github.io/num/favicon.ico",
|
|
html_root_url = "https://rust-num.github.io/num/",
|
|
html_playground_url = "http://play.integer32.com/")]
|
|
|
|
#[cfg(feature = "rustc-serialize")]
|
|
extern crate rustc_serialize;
|
|
#[cfg(feature = "serde")]
|
|
extern crate serde;
|
|
#[cfg(feature = "num-bigint")]
|
|
extern crate num_bigint as bigint;
|
|
|
|
extern crate num_traits as traits;
|
|
extern crate num_integer as integer;
|
|
|
|
use std::cmp;
|
|
use std::error::Error;
|
|
use std::fmt;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::ops::{Add, Div, Mul, Neg, Rem, Sub};
|
|
use std::str::FromStr;
|
|
|
|
#[cfg(feature = "num-bigint")]
|
|
use bigint::{BigInt, BigUint, Sign};
|
|
|
|
use integer::Integer;
|
|
use traits::{FromPrimitive, Float, PrimInt, Num, Signed, Zero, One, Bounded, NumCast};
|
|
|
|
/// Represents the ratio between 2 numbers.
|
|
#[derive(Copy, Clone, Debug)]
|
|
#[cfg_attr(feature = "rustc-serialize", derive(RustcEncodable, RustcDecodable))]
|
|
#[allow(missing_docs)]
|
|
pub struct Ratio<T> {
|
|
numer: T,
|
|
denom: T,
|
|
}
|
|
|
|
/// Alias for a `Ratio` of machine-sized integers.
|
|
pub type Rational = Ratio<isize>;
|
|
pub type Rational32 = Ratio<i32>;
|
|
pub type Rational64 = Ratio<i64>;
|
|
|
|
#[cfg(feature = "num-bigint")]
|
|
/// Alias for arbitrary precision rationals.
|
|
pub type BigRational = Ratio<BigInt>;
|
|
|
|
impl<T: Clone + Integer> Ratio<T> {
|
|
/// Creates a new `Ratio`. Fails if `denom` is zero.
|
|
#[inline]
|
|
pub fn new(numer: T, denom: T) -> Ratio<T> {
|
|
if denom.is_zero() {
|
|
panic!("denominator == 0");
|
|
}
|
|
let mut ret = Ratio::new_raw(numer, denom);
|
|
ret.reduce();
|
|
ret
|
|
}
|
|
|
|
/// Creates a `Ratio` representing the integer `t`.
|
|
#[inline]
|
|
pub fn from_integer(t: T) -> Ratio<T> {
|
|
Ratio::new_raw(t, One::one())
|
|
}
|
|
|
|
/// Creates a `Ratio` without checking for `denom == 0` or reducing.
|
|
#[inline]
|
|
pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
|
|
Ratio {
|
|
numer: numer,
|
|
denom: denom,
|
|
}
|
|
}
|
|
|
|
/// Converts to an integer, rounding towards zero.
|
|
#[inline]
|
|
pub fn to_integer(&self) -> T {
|
|
self.trunc().numer
|
|
}
|
|
|
|
/// Gets an immutable reference to the numerator.
|
|
#[inline]
|
|
pub fn numer<'a>(&'a self) -> &'a T {
|
|
&self.numer
|
|
}
|
|
|
|
/// Gets an immutable reference to the denominator.
|
|
#[inline]
|
|
pub fn denom<'a>(&'a self) -> &'a T {
|
|
&self.denom
|
|
}
|
|
|
|
/// Returns true if the rational number is an integer (denominator is 1).
|
|
#[inline]
|
|
pub fn is_integer(&self) -> bool {
|
|
self.denom == One::one()
|
|
}
|
|
|
|
/// Puts self into lowest terms, with denom > 0.
|
|
fn reduce(&mut self) {
|
|
let g: T = self.numer.gcd(&self.denom);
|
|
|
|
// FIXME(#5992): assignment operator overloads
|
|
// self.numer /= g;
|
|
self.numer = self.numer.clone() / g.clone();
|
|
// FIXME(#5992): assignment operator overloads
|
|
// self.denom /= g;
|
|
self.denom = self.denom.clone() / g;
|
|
|
|
// keep denom positive!
|
|
if self.denom < T::zero() {
|
|
self.numer = T::zero() - self.numer.clone();
|
|
self.denom = T::zero() - self.denom.clone();
|
|
}
|
|
}
|
|
|
|
/// Returns a reduced copy of self.
|
|
///
|
|
/// In general, it is not necessary to use this method, as the only
|
|
/// method of procuring a non-reduced fraction is through `new_raw`.
|
|
pub fn reduced(&self) -> Ratio<T> {
|
|
let mut ret = self.clone();
|
|
ret.reduce();
|
|
ret
|
|
}
|
|
|
|
/// Returns the reciprocal.
|
|
///
|
|
/// Fails if the `Ratio` is zero.
|
|
#[inline]
|
|
pub fn recip(&self) -> Ratio<T> {
|
|
match self.numer.cmp(&T::zero()) {
|
|
cmp::Ordering::Equal => panic!("numerator == 0"),
|
|
cmp::Ordering::Greater => Ratio::new_raw(self.denom.clone(), self.numer.clone()),
|
|
cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom.clone(),
|
|
T::zero() - self.numer.clone())
|
|
}
|
|
}
|
|
|
|
/// Rounds towards minus infinity.
|
|
#[inline]
|
|
pub fn floor(&self) -> Ratio<T> {
|
|
if *self < Zero::zero() {
|
|
let one: T = One::one();
|
|
Ratio::from_integer((self.numer.clone() - self.denom.clone() + one) /
|
|
self.denom.clone())
|
|
} else {
|
|
Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
|
}
|
|
}
|
|
|
|
/// Rounds towards plus infinity.
|
|
#[inline]
|
|
pub fn ceil(&self) -> Ratio<T> {
|
|
if *self < Zero::zero() {
|
|
Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
|
} else {
|
|
let one: T = One::one();
|
|
Ratio::from_integer((self.numer.clone() + self.denom.clone() - one) /
|
|
self.denom.clone())
|
|
}
|
|
}
|
|
|
|
/// Rounds to the nearest integer. Rounds half-way cases away from zero.
|
|
#[inline]
|
|
pub fn round(&self) -> Ratio<T> {
|
|
let zero: Ratio<T> = Zero::zero();
|
|
let one: T = One::one();
|
|
let two: T = one.clone() + one.clone();
|
|
|
|
// Find unsigned fractional part of rational number
|
|
let mut fractional = self.fract();
|
|
if fractional < zero {
|
|
fractional = zero - fractional
|
|
};
|
|
|
|
// The algorithm compares the unsigned fractional part with 1/2, that
|
|
// is, a/b >= 1/2, or a >= b/2. For odd denominators, we use
|
|
// a >= (b/2)+1. This avoids overflow issues.
|
|
let half_or_larger = if fractional.denom().is_even() {
|
|
*fractional.numer() >= fractional.denom().clone() / two.clone()
|
|
} else {
|
|
*fractional.numer() >= (fractional.denom().clone() / two.clone()) + one.clone()
|
|
};
|
|
|
|
if half_or_larger {
|
|
let one: Ratio<T> = One::one();
|
|
if *self >= Zero::zero() {
|
|
self.trunc() + one
|
|
} else {
|
|
self.trunc() - one
|
|
}
|
|
} else {
|
|
self.trunc()
|
|
}
|
|
}
|
|
|
|
/// Rounds towards zero.
|
|
#[inline]
|
|
pub fn trunc(&self) -> Ratio<T> {
|
|
Ratio::from_integer(self.numer.clone() / self.denom.clone())
|
|
}
|
|
|
|
/// Returns the fractional part of a number, with division rounded towards zero.
|
|
///
|
|
/// Satisfies `self == self.trunc() + self.fract()`.
|
|
#[inline]
|
|
pub fn fract(&self) -> Ratio<T> {
|
|
Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone())
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Integer + PrimInt> Ratio<T> {
|
|
/// Raises the `Ratio` to the power of an exponent.
|
|
#[inline]
|
|
pub fn pow(&self, expon: i32) -> Ratio<T> {
|
|
match expon.cmp(&0) {
|
|
cmp::Ordering::Equal => One::one(),
|
|
cmp::Ordering::Less => self.recip().pow(-expon),
|
|
cmp::Ordering::Greater => {
|
|
Ratio::new_raw(self.numer.pow(expon as u32), self.denom.pow(expon as u32))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "num-bigint")]
|
|
impl Ratio<BigInt> {
|
|
/// Converts a float into a rational number.
|
|
pub fn from_float<T: Float>(f: T) -> Option<BigRational> {
|
|
if !f.is_finite() {
|
|
return None;
|
|
}
|
|
let (mantissa, exponent, sign) = f.integer_decode();
|
|
let bigint_sign = if sign == 1 {
|
|
Sign::Plus
|
|
} else {
|
|
Sign::Minus
|
|
};
|
|
if exponent < 0 {
|
|
let one: BigInt = One::one();
|
|
let denom: BigInt = one << ((-exponent) as usize);
|
|
let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
|
|
Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom))
|
|
} else {
|
|
let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap();
|
|
numer = numer << (exponent as usize);
|
|
Some(Ratio::from_integer(BigInt::from_biguint(bigint_sign, numer)))
|
|
}
|
|
}
|
|
}
|
|
|
|
// From integer
|
|
impl<T> From<T> for Ratio<T> where T: Clone + Integer {
|
|
fn from(x: T) -> Ratio<T> {
|
|
Ratio::from_integer(x)
|
|
}
|
|
}
|
|
|
|
|
|
// From pair (through the `new` constructor)
|
|
impl<T> From<(T, T)> for Ratio<T> where T: Clone + Integer {
|
|
fn from(pair: (T, T)) -> Ratio<T> {
|
|
Ratio::new(pair.0, pair.1)
|
|
}
|
|
}
|
|
|
|
// Comparisons
|
|
|
|
// Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy
|
|
// for those multiplications to overflow fixed-size integers, so we need to take care.
|
|
|
|
impl<T: Clone + Integer> Ord for Ratio<T> {
|
|
#[inline]
|
|
fn cmp(&self, other: &Self) -> cmp::Ordering {
|
|
// With equal denominators, the numerators can be directly compared
|
|
if self.denom == other.denom {
|
|
let ord = self.numer.cmp(&other.numer);
|
|
return if self.denom < T::zero() {
|
|
ord.reverse()
|
|
} else {
|
|
ord
|
|
};
|
|
}
|
|
|
|
// With equal numerators, the denominators can be inversely compared
|
|
if self.numer == other.numer {
|
|
let ord = self.denom.cmp(&other.denom);
|
|
return if self.numer < T::zero() {
|
|
ord
|
|
} else {
|
|
ord.reverse()
|
|
};
|
|
}
|
|
|
|
// Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the
|
|
// division below, or even always avoid it for BigInt and BigUint.
|
|
// FIXME- future breaking change to add Checked* to Integer?
|
|
|
|
// Compare as floored integers and remainders
|
|
let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom);
|
|
let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom);
|
|
match self_int.cmp(&other_int) {
|
|
cmp::Ordering::Greater => cmp::Ordering::Greater,
|
|
cmp::Ordering::Less => cmp::Ordering::Less,
|
|
cmp::Ordering::Equal => {
|
|
match (self_rem.is_zero(), other_rem.is_zero()) {
|
|
(true, true) => cmp::Ordering::Equal,
|
|
(true, false) => cmp::Ordering::Less,
|
|
(false, true) => cmp::Ordering::Greater,
|
|
(false, false) => {
|
|
// Compare the reciprocals of the remaining fractions in reverse
|
|
let self_recip = Ratio::new_raw(self.denom.clone(), self_rem);
|
|
let other_recip = Ratio::new_raw(other.denom.clone(), other_rem);
|
|
self_recip.cmp(&other_recip).reverse()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Integer> PartialOrd for Ratio<T> {
|
|
#[inline]
|
|
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
|
|
Some(self.cmp(other))
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Integer> PartialEq for Ratio<T> {
|
|
#[inline]
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.cmp(other) == cmp::Ordering::Equal
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Integer> Eq for Ratio<T> {}
|
|
|
|
// NB: We can't just `#[derive(Hash)]`, because it needs to agree
|
|
// with `Eq` even for non-reduced ratios.
|
|
impl<T: Clone + Integer + Hash> Hash for Ratio<T> {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
recurse(&self.numer, &self.denom, state);
|
|
|
|
fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) {
|
|
if !denom.is_zero() {
|
|
let (int, rem) = numer.div_mod_floor(denom);
|
|
int.hash(state);
|
|
recurse(denom, &rem, state);
|
|
} else {
|
|
denom.hash(state);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
macro_rules! forward_val_val_binop {
|
|
(impl $imp:ident, $method:ident) => {
|
|
impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> {
|
|
type Output = Ratio<T>;
|
|
|
|
#[inline]
|
|
fn $method(self, other: Ratio<T>) -> Ratio<T> {
|
|
(&self).$method(&other)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! forward_ref_val_binop {
|
|
(impl $imp:ident, $method:ident) => {
|
|
impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> where
|
|
T: Clone + Integer
|
|
{
|
|
type Output = Ratio<T>;
|
|
|
|
#[inline]
|
|
fn $method(self, other: Ratio<T>) -> Ratio<T> {
|
|
self.$method(&other)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! forward_val_ref_binop {
|
|
(impl $imp:ident, $method:ident) => {
|
|
impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> where
|
|
T: Clone + Integer
|
|
{
|
|
type Output = Ratio<T>;
|
|
|
|
#[inline]
|
|
fn $method(self, other: &Ratio<T>) -> Ratio<T> {
|
|
(&self).$method(other)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! forward_all_binop {
|
|
(impl $imp:ident, $method:ident) => {
|
|
forward_val_val_binop!(impl $imp, $method);
|
|
forward_ref_val_binop!(impl $imp, $method);
|
|
forward_val_ref_binop!(impl $imp, $method);
|
|
};
|
|
}
|
|
|
|
// Arithmetic
|
|
forward_all_binop!(impl Mul, mul);
|
|
// a/b * c/d = (a*c)/(b*d)
|
|
impl<'a, 'b, T> Mul<&'b Ratio<T>> for &'a Ratio<T>
|
|
where T: Clone + Integer
|
|
{
|
|
type Output = Ratio<T>;
|
|
#[inline]
|
|
fn mul(self, rhs: &Ratio<T>) -> Ratio<T> {
|
|
Ratio::new(self.numer.clone() * rhs.numer.clone(),
|
|
self.denom.clone() * rhs.denom.clone())
|
|
}
|
|
}
|
|
|
|
forward_all_binop!(impl Div, div);
|
|
// (a/b) / (c/d) = (a*d)/(b*c)
|
|
impl<'a, 'b, T> Div<&'b Ratio<T>> for &'a Ratio<T>
|
|
where T: Clone + Integer
|
|
{
|
|
type Output = Ratio<T>;
|
|
|
|
#[inline]
|
|
fn div(self, rhs: &Ratio<T>) -> Ratio<T> {
|
|
Ratio::new(self.numer.clone() * rhs.denom.clone(),
|
|
self.denom.clone() * rhs.numer.clone())
|
|
}
|
|
}
|
|
|
|
// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
|
|
macro_rules! arith_impl {
|
|
(impl $imp:ident, $method:ident) => {
|
|
forward_all_binop!(impl $imp, $method);
|
|
impl<'a, 'b, T: Clone + Integer>
|
|
$imp<&'b Ratio<T>> for &'a Ratio<T> {
|
|
type Output = Ratio<T>;
|
|
#[inline]
|
|
fn $method(self, rhs: &Ratio<T>) -> Ratio<T> {
|
|
Ratio::new((self.numer.clone() * rhs.denom.clone()).$method(self.denom.clone() * rhs.numer.clone()),
|
|
self.denom.clone() * rhs.denom.clone())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// a/b + c/d = (a*d + b*c)/(b*d)
|
|
arith_impl!(impl Add, add);
|
|
|
|
// a/b - c/d = (a*d - b*c)/(b*d)
|
|
arith_impl!(impl Sub, sub);
|
|
|
|
// a/b % c/d = (a*d % b*c)/(b*d)
|
|
arith_impl!(impl Rem, rem);
|
|
|
|
impl<T> Neg for Ratio<T>
|
|
where T: Clone + Integer + Neg<Output = T>
|
|
{
|
|
type Output = Ratio<T>;
|
|
|
|
#[inline]
|
|
fn neg(self) -> Ratio<T> {
|
|
Ratio::new_raw(-self.numer, self.denom)
|
|
}
|
|
}
|
|
|
|
impl<'a, T> Neg for &'a Ratio<T>
|
|
where T: Clone + Integer + Neg<Output = T>
|
|
{
|
|
type Output = Ratio<T>;
|
|
|
|
#[inline]
|
|
fn neg(self) -> Ratio<T> {
|
|
-self.clone()
|
|
}
|
|
}
|
|
|
|
// Constants
|
|
impl<T: Clone + Integer> Zero for Ratio<T> {
|
|
#[inline]
|
|
fn zero() -> Ratio<T> {
|
|
Ratio::new_raw(Zero::zero(), One::one())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_zero(&self) -> bool {
|
|
self.numer.is_zero()
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Integer> One for Ratio<T> {
|
|
#[inline]
|
|
fn one() -> Ratio<T> {
|
|
Ratio::new_raw(One::one(), One::one())
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Integer> Num for Ratio<T> {
|
|
type FromStrRadixErr = ParseRatioError;
|
|
|
|
/// Parses `numer/denom` where the numbers are in base `radix`.
|
|
fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> {
|
|
let split: Vec<&str> = s.splitn(2, '/').collect();
|
|
if split.len() < 2 {
|
|
Err(ParseRatioError { kind: RatioErrorKind::ParseError })
|
|
} else {
|
|
let a_result: Result<T, _> = T::from_str_radix(split[0], radix).map_err(|_| {
|
|
ParseRatioError { kind: RatioErrorKind::ParseError }
|
|
});
|
|
a_result.and_then(|a| {
|
|
let b_result: Result<T, _> = T::from_str_radix(split[1], radix).map_err(|_| {
|
|
ParseRatioError { kind: RatioErrorKind::ParseError }
|
|
});
|
|
b_result.and_then(|b| {
|
|
if b.is_zero() {
|
|
Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator })
|
|
} else {
|
|
Ok(Ratio::new(a.clone(), b.clone()))
|
|
}
|
|
})
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: Clone + Integer + Signed> Signed for Ratio<T> {
|
|
#[inline]
|
|
fn abs(&self) -> Ratio<T> {
|
|
if self.is_negative() {
|
|
-self.clone()
|
|
} else {
|
|
self.clone()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> {
|
|
if *self <= *other {
|
|
Zero::zero()
|
|
} else {
|
|
self - other
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn signum(&self) -> Ratio<T> {
|
|
if self.is_positive() {
|
|
Self::one()
|
|
} else if self.is_zero() {
|
|
Self::zero()
|
|
} else {
|
|
-Self::one()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn is_positive(&self) -> bool {
|
|
(self.numer.is_positive() && self.denom.is_positive()) ||
|
|
(self.numer.is_negative() && self.denom.is_negative())
|
|
}
|
|
|
|
#[inline]
|
|
fn is_negative(&self) -> bool {
|
|
(self.numer.is_negative() && self.denom.is_positive()) ||
|
|
(self.numer.is_positive() && self.denom.is_negative())
|
|
}
|
|
}
|
|
|
|
// String conversions
|
|
impl<T> fmt::Display for Ratio<T>
|
|
where T: fmt::Display + Eq + One
|
|
{
|
|
/// Renders as `numer/denom`. If denom=1, renders as numer.
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
if self.denom == One::one() {
|
|
write!(f, "{}", self.numer)
|
|
} else {
|
|
write!(f, "{}/{}", self.numer, self.denom)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> {
|
|
type Err = ParseRatioError;
|
|
|
|
/// Parses `numer/denom` or just `numer`.
|
|
fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> {
|
|
let mut split = s.splitn(2, '/');
|
|
|
|
let n = try!(split.next().ok_or(ParseRatioError { kind: RatioErrorKind::ParseError }));
|
|
let num = try!(FromStr::from_str(n)
|
|
.map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError }));
|
|
|
|
let d = split.next().unwrap_or("1");
|
|
let den = try!(FromStr::from_str(d)
|
|
.map_err(|_| ParseRatioError { kind: RatioErrorKind::ParseError }));
|
|
|
|
if Zero::is_zero(&den) {
|
|
Err(ParseRatioError { kind: RatioErrorKind::ZeroDenominator })
|
|
} else {
|
|
Ok(Ratio::new(num, den))
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T> Into<(T, T)> for Ratio<T> {
|
|
fn into(self) -> (T, T) {
|
|
(self.numer, self.denom)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
impl<T> serde::Serialize for Ratio<T>
|
|
where T: serde::Serialize + Clone + Integer + PartialOrd
|
|
{
|
|
fn serialize<S>(&self, serializer: &mut S) -> Result<(), S::Error>
|
|
where S: serde::Serializer
|
|
{
|
|
(self.numer(), self.denom()).serialize(serializer)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "serde")]
|
|
impl<T> serde::Deserialize for Ratio<T>
|
|
where T: serde::Deserialize + Clone + Integer + PartialOrd
|
|
{
|
|
fn deserialize<D>(deserializer: &mut D) -> Result<Self, D::Error>
|
|
where D: serde::Deserializer
|
|
{
|
|
let (numer, denom): (T,T) = try!(serde::Deserialize::deserialize(deserializer));
|
|
if denom.is_zero() {
|
|
Err(serde::de::Error::invalid_value("denominator is zero"))
|
|
} else {
|
|
Ok(Ratio::new_raw(numer, denom))
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Bubble up specific errors
|
|
#[derive(Copy, Clone, Debug, PartialEq)]
|
|
pub struct ParseRatioError {
|
|
kind: RatioErrorKind,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq)]
|
|
enum RatioErrorKind {
|
|
ParseError,
|
|
ZeroDenominator,
|
|
}
|
|
|
|
impl fmt::Display for ParseRatioError {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
self.description().fmt(f)
|
|
}
|
|
}
|
|
|
|
impl Error for ParseRatioError {
|
|
fn description(&self) -> &str {
|
|
self.kind.description()
|
|
}
|
|
}
|
|
|
|
impl RatioErrorKind {
|
|
fn description(&self) -> &'static str {
|
|
match *self {
|
|
RatioErrorKind::ParseError => "failed to parse integer",
|
|
RatioErrorKind::ZeroDenominator => "zero value denominator",
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "num-bigint")]
|
|
impl FromPrimitive for Ratio<BigInt> {
|
|
fn from_i64(n: i64) -> Option<Self> {
|
|
Some(Ratio::from_integer(n.into()))
|
|
}
|
|
|
|
fn from_u64(n: u64) -> Option<Self> {
|
|
Some(Ratio::from_integer(n.into()))
|
|
}
|
|
|
|
fn from_f32(n: f32) -> Option<Self> {
|
|
Ratio::from_float(n)
|
|
}
|
|
|
|
fn from_f64(n: f64) -> Option<Self> {
|
|
Ratio::from_float(n)
|
|
}
|
|
}
|
|
|
|
macro_rules! from_primitive_integer {
|
|
($typ:ty, $approx:ident) => {
|
|
impl FromPrimitive for Ratio<$typ> {
|
|
fn from_i64(n: i64) -> Option<Self> {
|
|
<$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer)
|
|
}
|
|
|
|
fn from_u64(n: u64) -> Option<Self> {
|
|
<$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer)
|
|
}
|
|
|
|
fn from_f32(n: f32) -> Option<Self> {
|
|
$approx(n, 10e-20, 30)
|
|
}
|
|
|
|
fn from_f64(n: f64) -> Option<Self> {
|
|
$approx(n, 10e-20, 30)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
from_primitive_integer!(i8, approximate_float);
|
|
from_primitive_integer!(i16, approximate_float);
|
|
from_primitive_integer!(i32, approximate_float);
|
|
from_primitive_integer!(i64, approximate_float);
|
|
from_primitive_integer!(isize, approximate_float);
|
|
|
|
from_primitive_integer!(u8, approximate_float_unsigned);
|
|
from_primitive_integer!(u16, approximate_float_unsigned);
|
|
from_primitive_integer!(u32, approximate_float_unsigned);
|
|
from_primitive_integer!(u64, approximate_float_unsigned);
|
|
from_primitive_integer!(usize, approximate_float_unsigned);
|
|
|
|
impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> {
|
|
pub fn approximate_float<F: Float + NumCast>(f: F) -> Option<Ratio<T>> {
|
|
// 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems
|
|
// to work well. Might want to choose something based on the types in the future, e.g.
|
|
// T::max().recip() and T::bits() or something similar.
|
|
let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20");
|
|
approximate_float(f, epsilon, 30)
|
|
}
|
|
}
|
|
|
|
fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
|
|
where T: Integer + Signed + Bounded + NumCast + Clone,
|
|
F: Float + NumCast
|
|
{
|
|
let negative = val.is_sign_negative();
|
|
let abs_val = val.abs();
|
|
|
|
let r = approximate_float_unsigned(abs_val, max_error, max_iterations);
|
|
|
|
// Make negative again if needed
|
|
if negative {
|
|
r.map(|r| r.neg())
|
|
} else {
|
|
r
|
|
}
|
|
}
|
|
|
|
// No Unsigned constraint because this also works on positive integers and is called
|
|
// like that, see above
|
|
fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>>
|
|
where T: Integer + Bounded + NumCast + Clone,
|
|
F: Float + NumCast
|
|
{
|
|
// Continued fractions algorithm
|
|
// http://mathforum.org/dr.math/faq/faq.fractions.html#decfrac
|
|
|
|
if val < F::zero() {
|
|
return None;
|
|
}
|
|
|
|
let mut q = val;
|
|
let mut n0 = T::zero();
|
|
let mut d0 = T::one();
|
|
let mut n1 = T::one();
|
|
let mut d1 = T::zero();
|
|
|
|
let t_max = T::max_value();
|
|
let t_max_f = match <F as NumCast>::from(t_max.clone()) {
|
|
None => return None,
|
|
Some(t_max_f) => t_max_f,
|
|
};
|
|
|
|
// 1/epsilon > T::MAX
|
|
let epsilon = t_max_f.recip();
|
|
|
|
// Overflow
|
|
if q > t_max_f {
|
|
return None;
|
|
}
|
|
|
|
for _ in 0..max_iterations {
|
|
let a = match <T as NumCast>::from(q) {
|
|
None => break,
|
|
Some(a) => a,
|
|
};
|
|
|
|
let a_f = match <F as NumCast>::from(a.clone()) {
|
|
None => break,
|
|
Some(a_f) => a_f,
|
|
};
|
|
let f = q - a_f;
|
|
|
|
// Prevent overflow
|
|
if !a.is_zero() &&
|
|
(n1 > t_max.clone() / a.clone() ||
|
|
d1 > t_max.clone() / a.clone() ||
|
|
a.clone() * n1.clone() > t_max.clone() - n0.clone() ||
|
|
a.clone() * d1.clone() > t_max.clone() - d0.clone()) {
|
|
break;
|
|
}
|
|
|
|
let n = a.clone() * n1.clone() + n0.clone();
|
|
let d = a.clone() * d1.clone() + d0.clone();
|
|
|
|
n0 = n1;
|
|
d0 = d1;
|
|
n1 = n.clone();
|
|
d1 = d.clone();
|
|
|
|
// Simplify fraction. Doing so here instead of at the end
|
|
// allows us to get closer to the target value without overflows
|
|
let g = Integer::gcd(&n1, &d1);
|
|
if !g.is_zero() {
|
|
n1 = n1 / g.clone();
|
|
d1 = d1 / g.clone();
|
|
}
|
|
|
|
// Close enough?
|
|
let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) {
|
|
(Some(n_f), Some(d_f)) => (n_f, d_f),
|
|
_ => break,
|
|
};
|
|
if (n_f / d_f - val).abs() < max_error {
|
|
break;
|
|
}
|
|
|
|
// Prevent division by ~0
|
|
if f < epsilon {
|
|
break;
|
|
}
|
|
q = f.recip();
|
|
}
|
|
|
|
// Overflow
|
|
if d1.is_zero() {
|
|
return None;
|
|
}
|
|
|
|
Some(Ratio::new(n1, d1))
|
|
}
|
|
|
|
#[cfg(test)]
|
|
fn hash<T: Hash>(x: &T) -> u64 {
|
|
use std::hash::BuildHasher;
|
|
use std::collections::hash_map::RandomState;
|
|
let mut hasher = <RandomState as BuildHasher>::Hasher::new();
|
|
x.hash(&mut hasher);
|
|
hasher.finish()
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use super::{Ratio, Rational};
|
|
#[cfg(feature = "num-bigint")]
|
|
use super::BigRational;
|
|
|
|
use std::str::FromStr;
|
|
use std::i32;
|
|
use std::f64;
|
|
use traits::{Zero, One, Signed, FromPrimitive};
|
|
|
|
pub const _0: Rational = Ratio {
|
|
numer: 0,
|
|
denom: 1,
|
|
};
|
|
pub const _1: Rational = Ratio {
|
|
numer: 1,
|
|
denom: 1,
|
|
};
|
|
pub const _2: Rational = Ratio {
|
|
numer: 2,
|
|
denom: 1,
|
|
};
|
|
pub const _NEG2: Rational = Ratio {
|
|
numer: -2,
|
|
denom: 1,
|
|
};
|
|
pub const _1_2: Rational = Ratio {
|
|
numer: 1,
|
|
denom: 2,
|
|
};
|
|
pub const _3_2: Rational = Ratio {
|
|
numer: 3,
|
|
denom: 2,
|
|
};
|
|
pub const _NEG1_2: Rational = Ratio {
|
|
numer: -1,
|
|
denom: 2,
|
|
};
|
|
pub const _1_NEG2: Rational = Ratio {
|
|
numer: 1,
|
|
denom: -2,
|
|
};
|
|
pub const _NEG1_NEG2: Rational = Ratio {
|
|
numer: -1,
|
|
denom: -2,
|
|
};
|
|
pub const _1_3: Rational = Ratio {
|
|
numer: 1,
|
|
denom: 3,
|
|
};
|
|
pub const _NEG1_3: Rational = Ratio {
|
|
numer: -1,
|
|
denom: 3,
|
|
};
|
|
pub const _2_3: Rational = Ratio {
|
|
numer: 2,
|
|
denom: 3,
|
|
};
|
|
pub const _NEG2_3: Rational = Ratio {
|
|
numer: -2,
|
|
denom: 3,
|
|
};
|
|
|
|
#[cfg(feature = "num-bigint")]
|
|
pub fn to_big(n: Rational) -> BigRational {
|
|
Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(),
|
|
FromPrimitive::from_isize(n.denom).unwrap())
|
|
}
|
|
#[cfg(not(feature = "num-bigint"))]
|
|
pub fn to_big(n: Rational) -> Rational {
|
|
Ratio::new(FromPrimitive::from_isize(n.numer).unwrap(),
|
|
FromPrimitive::from_isize(n.denom).unwrap())
|
|
}
|
|
|
|
#[test]
|
|
fn test_test_constants() {
|
|
// check our constants are what Ratio::new etc. would make.
|
|
assert_eq!(_0, Zero::zero());
|
|
assert_eq!(_1, One::one());
|
|
assert_eq!(_2, Ratio::from_integer(2));
|
|
assert_eq!(_1_2, Ratio::new(1, 2));
|
|
assert_eq!(_3_2, Ratio::new(3, 2));
|
|
assert_eq!(_NEG1_2, Ratio::new(-1, 2));
|
|
assert_eq!(_2, From::from(2));
|
|
}
|
|
|
|
#[test]
|
|
fn test_new_reduce() {
|
|
let one22 = Ratio::new(2, 2);
|
|
|
|
assert_eq!(one22, One::one());
|
|
}
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_new_zero() {
|
|
let _a = Ratio::new(1, 0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_approximate_float() {
|
|
assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2)));
|
|
assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2)));
|
|
assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1)));
|
|
assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1)));
|
|
assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100)));
|
|
assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100)));
|
|
|
|
assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2)));
|
|
assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1)));
|
|
assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1)));
|
|
assert_eq!(Ratio::<i8>::from_f32(127.5f32), None);
|
|
assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2)));
|
|
assert_eq!(Ratio::<i8>::from_f32(-126.5f32), Some(Ratio::new(-126i8, 1)));
|
|
assert_eq!(Ratio::<i8>::from_f32(-127.0f32), Some(Ratio::new(-127i8, 1)));
|
|
assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None);
|
|
|
|
assert_eq!(Ratio::<u8>::from_f32(-127f32), None);
|
|
assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1)));
|
|
assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2)));
|
|
assert_eq!(Ratio::<u8>::from_f32(256f32), None);
|
|
|
|
assert_eq!(Ratio::<i64>::from_f64(-10e200), None);
|
|
assert_eq!(Ratio::<i64>::from_f64(10e200), None);
|
|
assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None);
|
|
assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None);
|
|
assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None);
|
|
assert_eq!(Ratio::<i64>::from_f64(f64::EPSILON), Some(Ratio::new(1, 4503599627370496)));
|
|
assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1)));
|
|
assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1)));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cmp() {
|
|
assert!(_0 == _0 && _1 == _1);
|
|
assert!(_0 != _1 && _1 != _0);
|
|
assert!(_0 < _1 && !(_1 < _0));
|
|
assert!(_1 > _0 && !(_0 > _1));
|
|
|
|
assert!(_0 <= _0 && _1 <= _1);
|
|
assert!(_0 <= _1 && !(_1 <= _0));
|
|
|
|
assert!(_0 >= _0 && _1 >= _1);
|
|
assert!(_1 >= _0 && !(_0 >= _1));
|
|
}
|
|
|
|
#[test]
|
|
fn test_cmp_overflow() {
|
|
use std::cmp::Ordering;
|
|
|
|
// issue #7 example:
|
|
let big = Ratio::new(128u8, 1);
|
|
let small = big.recip();
|
|
assert!(big > small);
|
|
|
|
// try a few that are closer together
|
|
// (some matching numer, some matching denom, some neither)
|
|
let ratios = vec![
|
|
Ratio::new(125_i8, 127_i8),
|
|
Ratio::new(63_i8, 64_i8),
|
|
Ratio::new(124_i8, 125_i8),
|
|
Ratio::new(125_i8, 126_i8),
|
|
Ratio::new(126_i8, 127_i8),
|
|
Ratio::new(127_i8, 126_i8),
|
|
];
|
|
|
|
fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) {
|
|
println!("comparing {} and {}", a, b);
|
|
assert_eq!(a.cmp(&b), ord);
|
|
assert_eq!(b.cmp(&a), ord.reverse());
|
|
}
|
|
|
|
for (i, &a) in ratios.iter().enumerate() {
|
|
check_cmp(a, a, Ordering::Equal);
|
|
check_cmp(-a, a, Ordering::Less);
|
|
for &b in &ratios[i + 1..] {
|
|
check_cmp(a, b, Ordering::Less);
|
|
check_cmp(-a, -b, Ordering::Greater);
|
|
check_cmp(a.recip(), b.recip(), Ordering::Greater);
|
|
check_cmp(-a.recip(), -b.recip(), Ordering::Less);
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_integer() {
|
|
assert_eq!(_0.to_integer(), 0);
|
|
assert_eq!(_1.to_integer(), 1);
|
|
assert_eq!(_2.to_integer(), 2);
|
|
assert_eq!(_1_2.to_integer(), 0);
|
|
assert_eq!(_3_2.to_integer(), 1);
|
|
assert_eq!(_NEG1_2.to_integer(), 0);
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_numer() {
|
|
assert_eq!(_0.numer(), &0);
|
|
assert_eq!(_1.numer(), &1);
|
|
assert_eq!(_2.numer(), &2);
|
|
assert_eq!(_1_2.numer(), &1);
|
|
assert_eq!(_3_2.numer(), &3);
|
|
assert_eq!(_NEG1_2.numer(), &(-1));
|
|
}
|
|
#[test]
|
|
fn test_denom() {
|
|
assert_eq!(_0.denom(), &1);
|
|
assert_eq!(_1.denom(), &1);
|
|
assert_eq!(_2.denom(), &1);
|
|
assert_eq!(_1_2.denom(), &2);
|
|
assert_eq!(_3_2.denom(), &2);
|
|
assert_eq!(_NEG1_2.denom(), &2);
|
|
}
|
|
|
|
|
|
#[test]
|
|
fn test_is_integer() {
|
|
assert!(_0.is_integer());
|
|
assert!(_1.is_integer());
|
|
assert!(_2.is_integer());
|
|
assert!(!_1_2.is_integer());
|
|
assert!(!_3_2.is_integer());
|
|
assert!(!_NEG1_2.is_integer());
|
|
}
|
|
|
|
#[test]
|
|
fn test_show() {
|
|
assert_eq!(format!("{}", _2), "2".to_string());
|
|
assert_eq!(format!("{}", _1_2), "1/2".to_string());
|
|
assert_eq!(format!("{}", _0), "0".to_string());
|
|
assert_eq!(format!("{}", Ratio::from_integer(-2)), "-2".to_string());
|
|
}
|
|
|
|
mod arith {
|
|
use super::{_0, _1, _2, _1_2, _3_2, _NEG1_2, to_big};
|
|
use super::super::{Ratio, Rational};
|
|
|
|
#[test]
|
|
fn test_add() {
|
|
fn test(a: Rational, b: Rational, c: Rational) {
|
|
assert_eq!(a + b, c);
|
|
assert_eq!(to_big(a) + to_big(b), to_big(c));
|
|
}
|
|
|
|
test(_1, _1_2, _3_2);
|
|
test(_1, _1, _2);
|
|
test(_1_2, _3_2, _2);
|
|
test(_1_2, _NEG1_2, _0);
|
|
}
|
|
|
|
#[test]
|
|
fn test_sub() {
|
|
fn test(a: Rational, b: Rational, c: Rational) {
|
|
assert_eq!(a - b, c);
|
|
assert_eq!(to_big(a) - to_big(b), to_big(c))
|
|
}
|
|
|
|
test(_1, _1_2, _1_2);
|
|
test(_3_2, _1_2, _1);
|
|
test(_1, _NEG1_2, _3_2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_mul() {
|
|
fn test(a: Rational, b: Rational, c: Rational) {
|
|
assert_eq!(a * b, c);
|
|
assert_eq!(to_big(a) * to_big(b), to_big(c))
|
|
}
|
|
|
|
test(_1, _1_2, _1_2);
|
|
test(_1_2, _3_2, Ratio::new(3, 4));
|
|
test(_1_2, _NEG1_2, Ratio::new(-1, 4));
|
|
}
|
|
|
|
#[test]
|
|
fn test_div() {
|
|
fn test(a: Rational, b: Rational, c: Rational) {
|
|
assert_eq!(a / b, c);
|
|
assert_eq!(to_big(a) / to_big(b), to_big(c))
|
|
}
|
|
|
|
test(_1, _1_2, _2);
|
|
test(_3_2, _1_2, _1 + _2);
|
|
test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_rem() {
|
|
fn test(a: Rational, b: Rational, c: Rational) {
|
|
assert_eq!(a % b, c);
|
|
assert_eq!(to_big(a) % to_big(b), to_big(c))
|
|
}
|
|
|
|
test(_3_2, _1, _1_2);
|
|
test(_2, _NEG1_2, _0);
|
|
test(_1_2, _2, _1_2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_neg() {
|
|
fn test(a: Rational, b: Rational) {
|
|
assert_eq!(-a, b);
|
|
assert_eq!(-to_big(a), to_big(b))
|
|
}
|
|
|
|
test(_0, _0);
|
|
test(_1_2, _NEG1_2);
|
|
test(-_1, _1);
|
|
}
|
|
#[test]
|
|
fn test_zero() {
|
|
assert_eq!(_0 + _0, _0);
|
|
assert_eq!(_0 * _0, _0);
|
|
assert_eq!(_0 * _1, _0);
|
|
assert_eq!(_0 / _NEG1_2, _0);
|
|
assert_eq!(_0 - _0, _0);
|
|
}
|
|
#[test]
|
|
#[should_panic]
|
|
fn test_div_0() {
|
|
let _a = _1 / _0;
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn test_round() {
|
|
assert_eq!(_1_3.ceil(), _1);
|
|
assert_eq!(_1_3.floor(), _0);
|
|
assert_eq!(_1_3.round(), _0);
|
|
assert_eq!(_1_3.trunc(), _0);
|
|
|
|
assert_eq!(_NEG1_3.ceil(), _0);
|
|
assert_eq!(_NEG1_3.floor(), -_1);
|
|
assert_eq!(_NEG1_3.round(), _0);
|
|
assert_eq!(_NEG1_3.trunc(), _0);
|
|
|
|
assert_eq!(_2_3.ceil(), _1);
|
|
assert_eq!(_2_3.floor(), _0);
|
|
assert_eq!(_2_3.round(), _1);
|
|
assert_eq!(_2_3.trunc(), _0);
|
|
|
|
assert_eq!(_NEG2_3.ceil(), _0);
|
|
assert_eq!(_NEG2_3.floor(), -_1);
|
|
assert_eq!(_NEG2_3.round(), -_1);
|
|
assert_eq!(_NEG2_3.trunc(), _0);
|
|
|
|
assert_eq!(_1_2.ceil(), _1);
|
|
assert_eq!(_1_2.floor(), _0);
|
|
assert_eq!(_1_2.round(), _1);
|
|
assert_eq!(_1_2.trunc(), _0);
|
|
|
|
assert_eq!(_NEG1_2.ceil(), _0);
|
|
assert_eq!(_NEG1_2.floor(), -_1);
|
|
assert_eq!(_NEG1_2.round(), -_1);
|
|
assert_eq!(_NEG1_2.trunc(), _0);
|
|
|
|
assert_eq!(_1.ceil(), _1);
|
|
assert_eq!(_1.floor(), _1);
|
|
assert_eq!(_1.round(), _1);
|
|
assert_eq!(_1.trunc(), _1);
|
|
|
|
// Overflow checks
|
|
|
|
let _neg1 = Ratio::from_integer(-1);
|
|
let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1);
|
|
let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX);
|
|
let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1);
|
|
let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2);
|
|
let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX);
|
|
let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2);
|
|
let _large_rat7 = Ratio::new(1, i32::MIN + 1);
|
|
let _large_rat8 = Ratio::new(1, i32::MAX);
|
|
|
|
assert_eq!(_large_rat1.round(), One::one());
|
|
assert_eq!(_large_rat2.round(), One::one());
|
|
assert_eq!(_large_rat3.round(), One::one());
|
|
assert_eq!(_large_rat4.round(), One::one());
|
|
assert_eq!(_large_rat5.round(), _neg1);
|
|
assert_eq!(_large_rat6.round(), _neg1);
|
|
assert_eq!(_large_rat7.round(), Zero::zero());
|
|
assert_eq!(_large_rat8.round(), Zero::zero());
|
|
}
|
|
|
|
#[test]
|
|
fn test_fract() {
|
|
assert_eq!(_1.fract(), _0);
|
|
assert_eq!(_NEG1_2.fract(), _NEG1_2);
|
|
assert_eq!(_1_2.fract(), _1_2);
|
|
assert_eq!(_3_2.fract(), _1_2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_recip() {
|
|
assert_eq!(_1 * _1.recip(), _1);
|
|
assert_eq!(_2 * _2.recip(), _1);
|
|
assert_eq!(_1_2 * _1_2.recip(), _1);
|
|
assert_eq!(_3_2 * _3_2.recip(), _1);
|
|
assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1);
|
|
|
|
assert_eq!(_3_2.recip(), _2_3);
|
|
assert_eq!(_NEG1_2.recip(), _NEG2);
|
|
assert_eq!(_NEG1_2.recip().denom(), &1);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic(expected = "== 0")]
|
|
fn test_recip_fail() {
|
|
let _a = Ratio::new(0, 1).recip();
|
|
}
|
|
|
|
#[test]
|
|
fn test_pow() {
|
|
assert_eq!(_1_2.pow(2), Ratio::new(1, 4));
|
|
assert_eq!(_1_2.pow(-2), Ratio::new(4, 1));
|
|
assert_eq!(_1.pow(1), _1);
|
|
assert_eq!(_NEG1_2.pow(2), _1_2.pow(2));
|
|
assert_eq!(_NEG1_2.pow(3), -_1_2.pow(3));
|
|
assert_eq!(_3_2.pow(0), _1);
|
|
assert_eq!(_3_2.pow(-1), _3_2.recip());
|
|
assert_eq!(_3_2.pow(3), Ratio::new(27, 8));
|
|
}
|
|
|
|
#[test]
|
|
fn test_to_from_str() {
|
|
fn test(r: Rational, s: String) {
|
|
assert_eq!(FromStr::from_str(&s), Ok(r));
|
|
assert_eq!(r.to_string(), s);
|
|
}
|
|
test(_1, "1".to_string());
|
|
test(_0, "0".to_string());
|
|
test(_1_2, "1/2".to_string());
|
|
test(_3_2, "3/2".to_string());
|
|
test(_2, "2".to_string());
|
|
test(_NEG1_2, "-1/2".to_string());
|
|
}
|
|
#[test]
|
|
fn test_from_str_fail() {
|
|
fn test(s: &str) {
|
|
let rational: Result<Rational, _> = FromStr::from_str(s);
|
|
assert!(rational.is_err());
|
|
}
|
|
|
|
let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"];
|
|
for &s in xs.iter() {
|
|
test(s);
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "num-bigint")]
|
|
#[test]
|
|
fn test_from_float() {
|
|
use traits::Float;
|
|
fn test<T: Float>(given: T, (numer, denom): (&str, &str)) {
|
|
let ratio: BigRational = Ratio::from_float(given).unwrap();
|
|
assert_eq!(ratio,
|
|
Ratio::new(FromStr::from_str(numer).unwrap(),
|
|
FromStr::from_str(denom).unwrap()));
|
|
}
|
|
|
|
// f32
|
|
test(3.14159265359f32, ("13176795", "4194304"));
|
|
test(2f32.powf(100.), ("1267650600228229401496703205376", "1"));
|
|
test(-2f32.powf(100.), ("-1267650600228229401496703205376", "1"));
|
|
test(1.0 / 2f32.powf(100.),
|
|
("1", "1267650600228229401496703205376"));
|
|
test(684729.48391f32, ("1369459", "2"));
|
|
test(-8573.5918555f32, ("-4389679", "512"));
|
|
|
|
// f64
|
|
test(3.14159265359f64, ("3537118876014453", "1125899906842624"));
|
|
test(2f64.powf(100.), ("1267650600228229401496703205376", "1"));
|
|
test(-2f64.powf(100.), ("-1267650600228229401496703205376", "1"));
|
|
test(684729.48391f64, ("367611342500051", "536870912"));
|
|
test(-8573.5918555f64, ("-4713381968463931", "549755813888"));
|
|
test(1.0 / 2f64.powf(100.),
|
|
("1", "1267650600228229401496703205376"));
|
|
}
|
|
|
|
#[cfg(feature = "num-bigint")]
|
|
#[test]
|
|
fn test_from_float_fail() {
|
|
use std::{f32, f64};
|
|
|
|
assert_eq!(Ratio::from_float(f32::NAN), None);
|
|
assert_eq!(Ratio::from_float(f32::INFINITY), None);
|
|
assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None);
|
|
assert_eq!(Ratio::from_float(f64::NAN), None);
|
|
assert_eq!(Ratio::from_float(f64::INFINITY), None);
|
|
assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None);
|
|
}
|
|
|
|
#[test]
|
|
fn test_signed() {
|
|
assert_eq!(_NEG1_2.abs(), _1_2);
|
|
assert_eq!(_3_2.abs_sub(&_1_2), _1);
|
|
assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero());
|
|
assert_eq!(_1_2.signum(), One::one());
|
|
assert_eq!(_NEG1_2.signum(), -<Ratio<isize>>::one());
|
|
assert_eq!(_0.signum(), Zero::zero());
|
|
assert!(_NEG1_2.is_negative());
|
|
assert!(_1_NEG2.is_negative());
|
|
assert!(!_NEG1_2.is_positive());
|
|
assert!(!_1_NEG2.is_positive());
|
|
assert!(_1_2.is_positive());
|
|
assert!(_NEG1_NEG2.is_positive());
|
|
assert!(!_1_2.is_negative());
|
|
assert!(!_NEG1_NEG2.is_negative());
|
|
assert!(!_0.is_positive());
|
|
assert!(!_0.is_negative());
|
|
}
|
|
|
|
#[test]
|
|
fn test_hash() {
|
|
assert!(::hash(&_0) != ::hash(&_1));
|
|
assert!(::hash(&_0) != ::hash(&_3_2));
|
|
|
|
// a == b -> hash(a) == hash(b)
|
|
let a = Rational::new_raw(4, 2);
|
|
let b = Rational::new_raw(6, 3);
|
|
assert_eq!(a, b);
|
|
assert_eq!(::hash(&a), ::hash(&b));
|
|
|
|
let a = Rational::new_raw(123456789, 1000);
|
|
let b = Rational::new_raw(123456789 * 5, 5000);
|
|
assert_eq!(a, b);
|
|
assert_eq!(::hash(&a), ::hash(&b));
|
|
}
|
|
|
|
#[test]
|
|
fn test_into_pair() {
|
|
assert_eq! ((0, 1), _0.into());
|
|
assert_eq! ((-2, 1), _NEG2.into());
|
|
assert_eq! ((1, -2), _1_NEG2.into());
|
|
}
|
|
|
|
#[test]
|
|
fn test_from_pair() {
|
|
assert_eq! (_0, Ratio::from ((0, 1)));
|
|
assert_eq! (_1, Ratio::from ((1, 1)));
|
|
assert_eq! (_NEG2, Ratio::from ((-2, 1)));
|
|
assert_eq! (_1_NEG2, Ratio::from ((1, -2)));
|
|
}
|
|
}
|