This commit is contained in:
Jef 2018-12-11 12:54:06 +01:00 committed by Sergei Pepyakin
parent da558c7ce7
commit 899cc32e45
31 changed files with 9157 additions and 8968 deletions

View File

@ -1,32 +1,31 @@
use std::env;
use std::process;
fn main() {
println!("cargo:rerun-if-changed=./wasm-kernel/");
println!("cargo:rerun-if-changed=./wasm-kernel/");
// The CARGO environment variable provides a path to the executable that
// runs this build process.
let cargo_bin = env::var("CARGO").expect("CARGO env variable should be defined");
// The CARGO environment variable provides a path to the executable that
// runs this build process.
let cargo_bin = env::var("CARGO").expect("CARGO env variable should be defined");
// Build a release version of wasm-kernel. The code in the output wasm binary
// will be used in benchmarks.
let output = process::Command::new(cargo_bin)
.arg("build")
.arg("--target=wasm32-unknown-unknown")
.arg("--release")
.arg("--manifest-path=./wasm-kernel/Cargo.toml")
.arg("--verbose")
.output()
.expect("failed to execute `cargo`");
// Build a release version of wasm-kernel. The code in the output wasm binary
// will be used in benchmarks.
let output = process::Command::new(cargo_bin)
.arg("build")
.arg("--target=wasm32-unknown-unknown")
.arg("--release")
.arg("--manifest-path=./wasm-kernel/Cargo.toml")
.arg("--verbose")
.output()
.expect("failed to execute `cargo`");
if !output.status.success() {
let msg = format!(
"status: {status}\nstdout: {stdout}\nstderr: {stderr}\n",
status=output.status,
stdout=String::from_utf8_lossy(&output.stdout),
stderr=String::from_utf8_lossy(&output.stderr),
);
panic!("{}", msg);
}
if !output.status.success() {
let msg = format!(
"status: {status}\nstdout: {stdout}\nstderr: {stderr}\n",
status = output.status,
stdout = String::from_utf8_lossy(&output.stdout),
stderr = String::from_utf8_lossy(&output.stderr),
);
panic!("{}", msg);
}
}

View File

@ -4,14 +4,14 @@ extern crate wasmi;
use std::env::args;
use std::fs::File;
use wasmi::{ModuleInstance, NopExternals, RuntimeValue, ImportsBuilder, Module};
use wasmi::{ImportsBuilder, Module, ModuleInstance, NopExternals, RuntimeValue};
fn load_from_file(filename: &str) -> Module {
use std::io::prelude::*;
let mut file = File::open(filename).unwrap();
let mut buf = Vec::new();
file.read_to_end(&mut buf).unwrap();
Module::from_buffer(buf).unwrap()
use std::io::prelude::*;
let mut file = File::open(filename).unwrap();
let mut buf = Vec::new();
file.read_to_end(&mut buf).unwrap();
Module::from_buffer(buf).unwrap()
}
fn main() {
@ -27,10 +27,10 @@ fn main() {
let module = load_from_file(&args[1]);
// Intialize deserialized module. It adds module into It expects 3 parameters:
// - a name for the module
// - a module declaration
// - "main" module doesn't import native module(s) this is why we don't need to provide external native modules here
// This test shows how to implement native module https://github.com/NikVolf/parity-wasm/blob/master/src/interpreter/tests/basics.rs#L197
// - a name for the module
// - a module declaration
// - "main" module doesn't import native module(s) this is why we don't need to provide external native modules here
// This test shows how to implement native module https://github.com/NikVolf/parity-wasm/blob/master/src/interpreter/tests/basics.rs#L197
let main = ModuleInstance::new(&module, &ImportsBuilder::default())
.expect("Failed to instantiate module")
.run_start(&mut NopExternals)
@ -40,5 +40,8 @@ fn main() {
let argument: i32 = args[2].parse().expect("Integer argument required");
// "_call" export of function to be executed with an i32 argument and prints the result of execution
println!("Result: {:?}", main.invoke_export("_call", &[RuntimeValue::I32(argument)], &mut NopExternals));
println!(
"Result: {:?}",
main.invoke_export("_call", &[RuntimeValue::I32(argument)], &mut NopExternals)
);
}

View File

@ -3,9 +3,8 @@ extern crate wasmi;
use std::env::args;
use parity_wasm::elements::{Internal, External, Type, FunctionType, ValueType};
use wasmi::{RuntimeValue, ModuleInstance, NopExternals, ImportsBuilder};
use parity_wasm::elements::{External, FunctionType, Internal, Type, ValueType};
use wasmi::{ImportsBuilder, ModuleInstance, NopExternals, RuntimeValue};
fn main() {
let args: Vec<_> = args().collect();
@ -23,14 +22,19 @@ fn main() {
// Export section has an entry with a func_name with an index inside a module
let export_section = module.export_section().expect("No export section found");
// It's a section with function declarations (which are references to the type section entries)
let function_section = module.function_section().expect("No function section found");
let function_section = module
.function_section()
.expect("No function section found");
// Type section stores function types which are referenced by function_section entries
let type_section = module.type_section().expect("No type section found");
// Given function name used to find export section entry which contains
// an `internal` field which points to the index in the function index space
let found_entry = export_section.entries().iter()
.find(|entry| func_name == entry.field()).expect(&format!("No export with name {} found", func_name));
let found_entry = export_section
.entries()
.iter()
.find(|entry| func_name == entry.field())
.expect(&format!("No export with name {} found", func_name));
// Function index in the function index space (internally-defined + imported)
let function_index: usize = match found_entry.internal() {
@ -41,11 +45,14 @@ fn main() {
// We need to count import section entries (functions only!) to subtract it from function_index
// and obtain the index within the function section
let import_section_len: usize = match module.import_section() {
Some(import) =>
import.entries().iter().filter(|entry| match entry.external() {
Some(import) => import
.entries()
.iter()
.filter(|entry| match entry.external() {
&External::Function(_) => true,
_ => false,
}).count(),
})
.count(),
None => 0,
};
@ -53,7 +60,8 @@ fn main() {
let function_index_in_section = function_index - import_section_len;
// Getting a type reference from a function section entry
let func_type_ref: usize = function_section.entries()[function_index_in_section].type_ref() as usize;
let func_type_ref: usize =
function_section.entries()[function_index_in_section].type_ref() as usize;
// Use the reference to get an actual function type
let function_type: &FunctionType = match &type_section.types()[func_type_ref] {
@ -61,12 +69,35 @@ fn main() {
};
// Parses arguments and constructs runtime values in correspondence of their types
function_type.params().iter().enumerate().map(|(i, value)| match value {
&ValueType::I32 => RuntimeValue::I32(program_args[i].parse::<i32>().expect(&format!("Can't parse arg #{} as i32", program_args[i]))),
&ValueType::I64 => RuntimeValue::I64(program_args[i].parse::<i64>().expect(&format!("Can't parse arg #{} as i64", program_args[i]))),
&ValueType::F32 => RuntimeValue::F32(program_args[i].parse::<f32>().expect(&format!("Can't parse arg #{} as f32", program_args[i])).into()),
&ValueType::F64 => RuntimeValue::F64(program_args[i].parse::<f64>().expect(&format!("Can't parse arg #{} as f64", program_args[i])).into()),
}).collect::<Vec<RuntimeValue>>()
function_type
.params()
.iter()
.enumerate()
.map(|(i, value)| match value {
&ValueType::I32 => RuntimeValue::I32(
program_args[i]
.parse::<i32>()
.expect(&format!("Can't parse arg #{} as i32", program_args[i])),
),
&ValueType::I64 => RuntimeValue::I64(
program_args[i]
.parse::<i64>()
.expect(&format!("Can't parse arg #{} as i64", program_args[i])),
),
&ValueType::F32 => RuntimeValue::F32(
program_args[i]
.parse::<f32>()
.expect(&format!("Can't parse arg #{} as f32", program_args[i]))
.into(),
),
&ValueType::F64 => RuntimeValue::F64(
program_args[i]
.parse::<f64>()
.expect(&format!("Can't parse arg #{} as f64", program_args[i]))
.into(),
),
})
.collect::<Vec<RuntimeValue>>()
};
let loaded_module = wasmi::Module::from_parity_wasm_module(module).expect("Module to be valid");
@ -81,5 +112,9 @@ fn main() {
.run_start(&mut NopExternals)
.expect("Failed to run start function in module");
println!("Result: {:?}", main.invoke_export(func_name, &args, &mut NopExternals).expect(""));
println!(
"Result: {:?}",
main.invoke_export(func_name, &args, &mut NopExternals)
.expect("")
);
}

View File

@ -1,256 +1,255 @@
extern crate wasmi;
extern crate parity_wasm;
extern crate wasmi;
use std::env;
use std::fmt;
use std::fs::File;
use wasmi::{
Error as InterpreterError, ModuleInstance, ModuleRef,
Externals, RuntimeValue, FuncRef, ModuleImportResolver,
FuncInstance, HostError, ImportsBuilder, Signature, ValueType,
RuntimeArgs, Trap,
Error as InterpreterError, Externals, FuncInstance, FuncRef, HostError, ImportsBuilder,
ModuleImportResolver, ModuleInstance, ModuleRef, RuntimeArgs, RuntimeValue, Signature, Trap,
ValueType,
};
#[derive(Debug)]
pub enum Error {
OutOfRange,
AlreadyOccupied,
Interpreter(InterpreterError),
OutOfRange,
AlreadyOccupied,
Interpreter(InterpreterError),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self)
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self)
}
}
impl From<InterpreterError> for Error {
fn from(e: InterpreterError) -> Self {
Error::Interpreter(e)
}
fn from(e: InterpreterError) -> Self {
Error::Interpreter(e)
}
}
impl HostError for Error {}
mod tictactoe {
use super::Error;
use super::Error;
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Player {
X,
O,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Player {
X,
O,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum GameResult {
Draw,
Won(Player),
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum GameResult {
Draw,
Won(Player),
}
impl Player {
pub fn into_i32(maybe_player: Option<Player>) -> i32 {
match maybe_player {
None => 0,
Some(Player::X) => 1,
Some(Player::O) => 2,
}
}
}
impl Player {
pub fn into_i32(maybe_player: Option<Player>) -> i32 {
match maybe_player {
None => 0,
Some(Player::X) => 1,
Some(Player::O) => 2,
}
}
}
#[derive(Debug)]
pub struct Game {
board: [Option<Player>; 9],
}
#[derive(Debug)]
pub struct Game {
board: [Option<Player>; 9],
}
impl Game {
pub fn new() -> Game {
Game {
board: [None; 9],
}
}
impl Game {
pub fn new() -> Game {
Game { board: [None; 9] }
}
pub fn set(&mut self, idx: i32, player: Player) -> Result<(), Error> {
if idx < 0 || idx > 9 {
return Err(Error::OutOfRange);
}
if self.board[idx as usize] != None {
return Err(Error::AlreadyOccupied);
}
self.board[idx as usize] = Some(player);
Ok(())
}
pub fn set(&mut self, idx: i32, player: Player) -> Result<(), Error> {
if idx < 0 || idx > 9 {
return Err(Error::OutOfRange);
}
if self.board[idx as usize] != None {
return Err(Error::AlreadyOccupied);
}
self.board[idx as usize] = Some(player);
Ok(())
}
pub fn get(&self, idx: i32) -> Result<Option<Player>, Error> {
if idx < 0 || idx > 9 {
return Err(Error::OutOfRange);
}
Ok(self.board[idx as usize])
}
pub fn get(&self, idx: i32) -> Result<Option<Player>, Error> {
if idx < 0 || idx > 9 {
return Err(Error::OutOfRange);
}
Ok(self.board[idx as usize])
}
pub fn game_result(&self) -> Option<GameResult> {
// 0, 1, 2
// 3, 4, 5
// 6, 7, 8
let patterns = &[
// Rows
(0, 1, 2),
(3, 4, 5),
(6, 7, 8),
pub fn game_result(&self) -> Option<GameResult> {
// 0, 1, 2
// 3, 4, 5
// 6, 7, 8
let patterns = &[
// Rows
(0, 1, 2),
(3, 4, 5),
(6, 7, 8),
// Columns
(0, 3, 6),
(1, 4, 7),
(2, 5, 8),
// Diagonals
(0, 4, 8),
(2, 4, 6),
];
// Columns
(0, 3, 6),
(1, 4, 7),
(2, 5, 8),
// Returns Some(player) if all cells contain same Player.
let all_same = |i1: usize, i2: usize, i3: usize| -> Option<Player> {
if self.board[i1].is_none() {
return None;
}
if self.board[i1] == self.board[i2] && self.board[i2] == self.board[i3] {
return self.board[i1];
}
None
};
// Diagonals
(0, 4, 8),
(2, 4, 6),
];
for &(i1, i2, i3) in patterns {
if let Some(player) = all_same(i1, i2, i3) {
return Some(GameResult::Won(player));
}
}
// Returns Some(player) if all cells contain same Player.
let all_same = |i1: usize, i2: usize, i3: usize| -> Option<Player> {
if self.board[i1].is_none() {
return None;
}
if self.board[i1] == self.board[i2] && self.board[i2] == self.board[i3] {
return self.board[i1];
}
None
};
for &(i1, i2, i3) in patterns {
if let Some(player) = all_same(i1, i2, i3) {
return Some(GameResult::Won(player));
}
}
// Ok, there is no winner. Check if it's draw.
let all_occupied = self.board.iter().all(|&cell| cell.is_some());
if all_occupied {
Some(GameResult::Draw)
} else {
// Nah, there are still empty cells left.
None
}
}
}
// Ok, there is no winner. Check if it's draw.
let all_occupied = self.board.iter().all(|&cell| cell.is_some());
if all_occupied {
Some(GameResult::Draw)
} else {
// Nah, there are still empty cells left.
None
}
}
}
}
struct Runtime<'a> {
player: tictactoe::Player,
game: &'a mut tictactoe::Game,
player: tictactoe::Player,
game: &'a mut tictactoe::Game,
}
const SET_FUNC_INDEX: usize = 0;
const GET_FUNC_INDEX: usize = 1;
impl<'a> Externals for Runtime<'a> {
fn invoke_index(
&mut self,
index: usize,
args: RuntimeArgs,
) -> Result<Option<RuntimeValue>, Trap> {
match index {
SET_FUNC_INDEX => {
let idx: i32 = args.nth(0);
self.game.set(idx, self.player)?;
Ok(None)
}
GET_FUNC_INDEX => {
let idx: i32 = args.nth(0);
let val: i32 = tictactoe::Player::into_i32(self.game.get(idx)?);
Ok(Some(val.into()))
}
_ => panic!("unknown function index")
}
}
fn invoke_index(
&mut self,
index: usize,
args: RuntimeArgs,
) -> Result<Option<RuntimeValue>, Trap> {
match index {
SET_FUNC_INDEX => {
let idx: i32 = args.nth(0);
self.game.set(idx, self.player)?;
Ok(None)
}
GET_FUNC_INDEX => {
let idx: i32 = args.nth(0);
let val: i32 = tictactoe::Player::into_i32(self.game.get(idx)?);
Ok(Some(val.into()))
}
_ => panic!("unknown function index"),
}
}
}
struct RuntimeModuleImportResolver;
impl<'a> ModuleImportResolver for RuntimeModuleImportResolver {
fn resolve_func(
&self,
field_name: &str,
_signature: &Signature,
) -> Result<FuncRef, InterpreterError> {
let func_ref = match field_name {
"set" => {
FuncInstance::alloc_host(Signature::new(&[ValueType::I32][..], None), SET_FUNC_INDEX)
},
"get" => FuncInstance::alloc_host(Signature::new(&[ValueType::I32][..], Some(ValueType::I32)), GET_FUNC_INDEX),
_ => return Err(
InterpreterError::Function(
format!("host module doesn't export function with name {}", field_name)
)
)
};
Ok(func_ref)
}
fn resolve_func(
&self,
field_name: &str,
_signature: &Signature,
) -> Result<FuncRef, InterpreterError> {
let func_ref = match field_name {
"set" => FuncInstance::alloc_host(
Signature::new(&[ValueType::I32][..], None),
SET_FUNC_INDEX,
),
"get" => FuncInstance::alloc_host(
Signature::new(&[ValueType::I32][..], Some(ValueType::I32)),
GET_FUNC_INDEX,
),
_ => {
return Err(InterpreterError::Function(format!(
"host module doesn't export function with name {}",
field_name
)));
}
};
Ok(func_ref)
}
}
fn instantiate(path: &str) -> Result<ModuleRef, Error> {
let module = {
use std::io::prelude::*;
let mut file = File::open(path).unwrap();
let mut wasm_buf = Vec::new();
file.read_to_end(&mut wasm_buf).unwrap();
wasmi::Module::from_buffer(&wasm_buf)?
};
let module = {
use std::io::prelude::*;
let mut file = File::open(path).unwrap();
let mut wasm_buf = Vec::new();
file.read_to_end(&mut wasm_buf).unwrap();
wasmi::Module::from_buffer(&wasm_buf)?
};
let mut imports = ImportsBuilder::new();
imports.push_resolver("env", &RuntimeModuleImportResolver);
let mut imports = ImportsBuilder::new();
imports.push_resolver("env", &RuntimeModuleImportResolver);
let instance = ModuleInstance::new(&module, &imports)?
.assert_no_start();
let instance = ModuleInstance::new(&module, &imports)?.assert_no_start();
Ok(instance)
Ok(instance)
}
fn play(
x_instance: ModuleRef,
o_instance: ModuleRef,
game: &mut tictactoe::Game,
x_instance: ModuleRef,
o_instance: ModuleRef,
game: &mut tictactoe::Game,
) -> Result<tictactoe::GameResult, Error> {
let mut turn_of = tictactoe::Player::X;
let game_result = loop {
let (instance, next_turn_of) = match turn_of {
tictactoe::Player::X => (&x_instance, tictactoe::Player::O),
tictactoe::Player::O => (&o_instance, tictactoe::Player::X),
};
let mut turn_of = tictactoe::Player::X;
let game_result = loop {
let (instance, next_turn_of) = match turn_of {
tictactoe::Player::X => (&x_instance, tictactoe::Player::O),
tictactoe::Player::O => (&o_instance, tictactoe::Player::X),
};
{
let mut runtime = Runtime {
player: turn_of,
game: game,
};
let _ = instance.invoke_export("mk_turn", &[], &mut runtime)?;
}
{
let mut runtime = Runtime {
player: turn_of,
game: game,
};
let _ = instance.invoke_export("mk_turn", &[], &mut runtime)?;
}
match game.game_result() {
Some(game_result) => break game_result,
None => {}
}
match game.game_result() {
Some(game_result) => break game_result,
None => {}
}
turn_of = next_turn_of;
};
turn_of = next_turn_of;
};
Ok(game_result)
Ok(game_result)
}
fn main() {
let mut game = tictactoe::Game::new();
let mut game = tictactoe::Game::new();
let args: Vec<_> = env::args().collect();
if args.len() < 3 {
println!("Usage: {} <x player module> <y player module>", args[0]);
return;
}
let args: Vec<_> = env::args().collect();
if args.len() < 3 {
println!("Usage: {} <x player module> <y player module>", args[0]);
return;
}
// Instantiate modules of X and O players.
let x_instance = instantiate(&args[1]).expect("X player module to load");
let o_instance = instantiate(&args[2]).expect("Y player module to load");
// Instantiate modules of X and O players.
let x_instance = instantiate(&args[1]).expect("X player module to load");
let o_instance = instantiate(&args[2]).expect("Y player module to load");
let result = play(x_instance, o_instance, &mut game);
println!("result = {:?}, game = {:#?}", result, game);
let result = play(x_instance, o_instance, &mut game);
println!("result = {:?}, game = {:#?}", result, game);
}

View File

@ -5,77 +5,79 @@ extern crate wasmi;
use std::env::args;
use std::fs::File;
use wasmi::{
Error, FuncInstance, FuncRef, GlobalDescriptor, GlobalInstance, GlobalRef,
ImportsBuilder, MemoryDescriptor, MemoryInstance, MemoryRef, Module,
ModuleImportResolver, ModuleInstance, NopExternals, RuntimeValue, Signature,
TableDescriptor, TableInstance, TableRef};
use wasmi::memory_units::*;
use wasmi::{
Error, FuncInstance, FuncRef, GlobalDescriptor, GlobalInstance, GlobalRef, ImportsBuilder,
MemoryDescriptor, MemoryInstance, MemoryRef, Module, ModuleImportResolver, ModuleInstance,
NopExternals, RuntimeValue, Signature, TableDescriptor, TableInstance, TableRef,
};
fn load_from_file(filename: &str) -> Module {
use std::io::prelude::*;
let mut file = File::open(filename).unwrap();
let mut buf = Vec::new();
file.read_to_end(&mut buf).unwrap();
Module::from_buffer(buf).unwrap()
use std::io::prelude::*;
let mut file = File::open(filename).unwrap();
let mut buf = Vec::new();
file.read_to_end(&mut buf).unwrap();
Module::from_buffer(buf).unwrap()
}
struct ResolveAll;
impl ModuleImportResolver for ResolveAll {
fn resolve_func(&self, _field_name: &str, signature: &Signature) -> Result<FuncRef, Error> {
Ok(FuncInstance::alloc_host(signature.clone(), 0))
}
fn resolve_func(&self, _field_name: &str, signature: &Signature) -> Result<FuncRef, Error> {
Ok(FuncInstance::alloc_host(signature.clone(), 0))
}
fn resolve_global(
&self,
_field_name: &str,
global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
Ok(GlobalInstance::alloc(
RuntimeValue::default(global_type.value_type()),
global_type.is_mutable(),
))
}
fn resolve_global(
&self,
_field_name: &str,
global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
Ok(GlobalInstance::alloc(
RuntimeValue::default(global_type.value_type()),
global_type.is_mutable(),
))
}
fn resolve_memory(
&self,
_field_name: &str,
memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
Ok(MemoryInstance::alloc(
Pages(memory_type.initial() as usize),
memory_type.maximum().map(|m| Pages(m as usize)),
).unwrap())
}
fn resolve_memory(
&self,
_field_name: &str,
memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
Ok(MemoryInstance::alloc(
Pages(memory_type.initial() as usize),
memory_type.maximum().map(|m| Pages(m as usize)),
)
.unwrap())
}
fn resolve_table(
&self,
_field_name: &str,
table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
Ok(TableInstance::alloc(table_type.initial(), table_type.maximum()).unwrap())
}
fn resolve_table(
&self,
_field_name: &str,
table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
Ok(TableInstance::alloc(table_type.initial(), table_type.maximum()).unwrap())
}
}
fn main() {
let args: Vec<_> = args().collect();
if args.len() != 2 {
println!("Usage: {} <wasm file>", args[0]);
return;
}
let module = load_from_file(&args[1]);
let _ = ModuleInstance::new(
&module,
&ImportsBuilder::default()
// Well known imports.
.with_resolver("env", &ResolveAll)
.with_resolver("global", &ResolveAll)
.with_resolver("foo", &ResolveAll)
.with_resolver("global.Math", &ResolveAll)
.with_resolver("asm2wasm", &ResolveAll)
.with_resolver("spectest", &ResolveAll),
).expect("Failed to instantiate module")
.run_start(&mut NopExternals)
.expect("Failed to run start function in module");
let args: Vec<_> = args().collect();
if args.len() != 2 {
println!("Usage: {} <wasm file>", args[0]);
return;
}
let module = load_from_file(&args[1]);
let _ = ModuleInstance::new(
&module,
&ImportsBuilder::default()
// Well known imports.
.with_resolver("env", &ResolveAll)
.with_resolver("global", &ResolveAll)
.with_resolver("foo", &ResolveAll)
.with_resolver("global.Math", &ResolveAll)
.with_resolver("asm2wasm", &ResolveAll)
.with_resolver("spectest", &ResolveAll),
)
.expect("Failed to instantiate module")
.run_start(&mut NopExternals)
.expect("Failed to run start function in module");
}

View File

@ -1,4 +1,3 @@
pub mod stack;
/// Index of default linear memory.

View File

@ -1,88 +1,101 @@
#[allow(unused_imports)]
use alloc::prelude::*;
use core::fmt;
#[cfg(feature = "std")]
use std::error;
use core::fmt;
#[derive(Debug)]
pub struct Error(String);
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[cfg(feature = "std")]
impl error::Error for Error {
fn description(&self) -> &str {
&self.0
}
fn description(&self) -> &str {
&self.0
}
}
/// Stack with limit.
#[derive(Debug)]
pub struct StackWithLimit<T> where T: Clone {
/// Stack values.
values: Vec<T>,
/// Stack limit (maximal stack len).
limit: usize,
pub struct StackWithLimit<T>
where
T: Clone,
{
/// Stack values.
values: Vec<T>,
/// Stack limit (maximal stack len).
limit: usize,
}
impl<T> StackWithLimit<T> where T: Clone {
pub fn with_limit(limit: usize) -> Self {
StackWithLimit {
values: Vec::new(),
limit: limit
}
}
impl<T> StackWithLimit<T>
where
T: Clone,
{
pub fn with_limit(limit: usize) -> Self {
StackWithLimit {
values: Vec::new(),
limit: limit,
}
}
pub fn is_empty(&self) -> bool {
self.values.is_empty()
}
pub fn is_empty(&self) -> bool {
self.values.is_empty()
}
pub fn len(&self) -> usize {
self.values.len()
}
pub fn len(&self) -> usize {
self.values.len()
}
pub fn top(&self) -> Result<&T, Error> {
self.values
.last()
.ok_or_else(|| Error("non-empty stack expected".into()))
}
pub fn top(&self) -> Result<&T, Error> {
self.values
.last()
.ok_or_else(|| Error("non-empty stack expected".into()))
}
pub fn top_mut(&mut self) -> Result<&mut T, Error> {
self.values
.last_mut()
.ok_or_else(|| Error("non-empty stack expected".into()))
}
pub fn top_mut(&mut self) -> Result<&mut T, Error> {
self.values
.last_mut()
.ok_or_else(|| Error("non-empty stack expected".into()))
}
pub fn get(&self, index: usize) -> Result<&T, Error> {
if index >= self.values.len() {
return Err(Error(format!("trying to get value at position {} on stack of size {}", index, self.values.len())));
}
pub fn get(&self, index: usize) -> Result<&T, Error> {
if index >= self.values.len() {
return Err(Error(format!(
"trying to get value at position {} on stack of size {}",
index,
self.values.len()
)));
}
Ok(self.values.get(self.values.len() - 1 - index).expect("checked couple of lines above"))
}
Ok(self
.values
.get(self.values.len() - 1 - index)
.expect("checked couple of lines above"))
}
pub fn push(&mut self, value: T) -> Result<(), Error> {
if self.values.len() >= self.limit {
return Err(Error(format!("exceeded stack limit {}", self.limit)));
}
pub fn push(&mut self, value: T) -> Result<(), Error> {
if self.values.len() >= self.limit {
return Err(Error(format!("exceeded stack limit {}", self.limit)));
}
self.values.push(value);
Ok(())
}
self.values.push(value);
Ok(())
}
pub fn pop(&mut self) -> Result<T, Error> {
self.values
.pop()
.ok_or_else(|| Error("non-empty stack expected".into()))
}
pub fn pop(&mut self) -> Result<T, Error> {
self.values
.pop()
.ok_or_else(|| Error("non-empty stack expected".into()))
}
pub fn resize(&mut self, new_size: usize, dummy: T) {
debug_assert!(new_size <= self.values.len());
self.values.resize(new_size, dummy);
}
pub fn resize(&mut self, new_size: usize, dummy: T) {
debug_assert!(new_size <= self.values.len());
self.values.resize(new_size, dummy);
}
}

View File

@ -2,14 +2,14 @@
use alloc::prelude::*;
use alloc::rc::{Rc, Weak};
use core::fmt;
use parity_wasm::elements::Local;
use {Trap, Signature};
use host::Externals;
use runner::{check_function_args, Interpreter, InterpreterState};
use value::RuntimeValue;
use types::ValueType;
use module::ModuleInstance;
use isa;
use module::ModuleInstance;
use parity_wasm::elements::Local;
use runner::{check_function_args, Interpreter, InterpreterState};
use types::ValueType;
use value::RuntimeValue;
use {Signature, Trap};
/// Reference to a function (See [`FuncInstance`] for details).
///
@ -20,10 +20,10 @@ use isa;
pub struct FuncRef(Rc<FuncInstance>);
impl ::core::ops::Deref for FuncRef {
type Target = FuncInstance;
fn deref(&self) -> &FuncInstance {
&self.0
}
type Target = FuncInstance;
fn deref(&self) -> &FuncInstance {
&self.0
}
}
/// Runtime representation of a function.
@ -44,271 +44,271 @@ pub struct FuncInstance(FuncInstanceInternal);
#[derive(Clone)]
pub(crate) enum FuncInstanceInternal {
Internal {
signature: Rc<Signature>,
module: Weak<ModuleInstance>,
body: Rc<FuncBody>,
},
Host {
signature: Signature,
host_func_index: usize,
},
Internal {
signature: Rc<Signature>,
module: Weak<ModuleInstance>,
body: Rc<FuncBody>,
},
Host {
signature: Signature,
host_func_index: usize,
},
}
impl fmt::Debug for FuncInstance {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.as_internal() {
&FuncInstanceInternal::Internal {
ref signature,
..
} => {
// We can't write description of self.module here, because it generate
// debug string for function instances and this will lead to infinite loop.
write!(
f,
"Internal {{ signature={:?} }}",
signature,
)
}
&FuncInstanceInternal::Host { ref signature, .. } => {
write!(f, "Host {{ signature={:?} }}", signature)
}
}
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.as_internal() {
&FuncInstanceInternal::Internal { ref signature, .. } => {
// We can't write description of self.module here, because it generate
// debug string for function instances and this will lead to infinite loop.
write!(f, "Internal {{ signature={:?} }}", signature,)
}
&FuncInstanceInternal::Host { ref signature, .. } => {
write!(f, "Host {{ signature={:?} }}", signature)
}
}
}
}
impl FuncInstance {
/// Allocate a function instance for a host function.
///
/// When this function instance will be called by the wasm code,
/// the instance of [`Externals`] will be invoked by calling `invoke_index`
/// with specified `host_func_index` here.
/// This call will be made with the `signature` provided here.
///
/// [`Externals`]: trait.Externals.html
pub fn alloc_host(signature: Signature, host_func_index: usize) -> FuncRef {
let func = FuncInstanceInternal::Host {
signature,
host_func_index,
};
FuncRef(Rc::new(FuncInstance(func)))
}
/// Allocate a function instance for a host function.
///
/// When this function instance will be called by the wasm code,
/// the instance of [`Externals`] will be invoked by calling `invoke_index`
/// with specified `host_func_index` here.
/// This call will be made with the `signature` provided here.
///
/// [`Externals`]: trait.Externals.html
pub fn alloc_host(signature: Signature, host_func_index: usize) -> FuncRef {
let func = FuncInstanceInternal::Host {
signature,
host_func_index,
};
FuncRef(Rc::new(FuncInstance(func)))
}
/// Returns [signature] of this function instance.
///
/// This function instance can only be called with matching signatures.
///
/// [signature]: struct.Signature.html
pub fn signature(&self) -> &Signature {
match *self.as_internal() {
FuncInstanceInternal::Internal { ref signature, .. } => signature,
FuncInstanceInternal::Host { ref signature, .. } => signature,
}
}
/// Returns [signature] of this function instance.
///
/// This function instance can only be called with matching signatures.
///
/// [signature]: struct.Signature.html
pub fn signature(&self) -> &Signature {
match *self.as_internal() {
FuncInstanceInternal::Internal { ref signature, .. } => signature,
FuncInstanceInternal::Host { ref signature, .. } => signature,
}
}
pub(crate) fn as_internal(&self) -> &FuncInstanceInternal {
&self.0
}
pub(crate) fn as_internal(&self) -> &FuncInstanceInternal {
&self.0
}
pub(crate) fn alloc_internal(
module: Weak<ModuleInstance>,
signature: Rc<Signature>,
body: FuncBody,
) -> FuncRef {
let func = FuncInstanceInternal::Internal {
signature,
module: module,
body: Rc::new(body),
};
FuncRef(Rc::new(FuncInstance(func)))
}
pub(crate) fn alloc_internal(
module: Weak<ModuleInstance>,
signature: Rc<Signature>,
body: FuncBody,
) -> FuncRef {
let func = FuncInstanceInternal::Internal {
signature,
module: module,
body: Rc::new(body),
};
FuncRef(Rc::new(FuncInstance(func)))
}
pub(crate) fn body(&self) -> Option<Rc<FuncBody>> {
match *self.as_internal() {
FuncInstanceInternal::Internal { ref body, .. } => Some(Rc::clone(body)),
FuncInstanceInternal::Host { .. } => None,
}
}
pub(crate) fn body(&self) -> Option<Rc<FuncBody>> {
match *self.as_internal() {
FuncInstanceInternal::Internal { ref body, .. } => Some(Rc::clone(body)),
FuncInstanceInternal::Host { .. } => None,
}
}
/// Invoke this function.
///
/// # Errors
///
/// Returns `Err` if `args` types is not match function [`signature`] or
/// if [`Trap`] at execution time occured.
///
/// [`signature`]: #method.signature
/// [`Trap`]: #enum.Trap.html
pub fn invoke<E: Externals>(
func: &FuncRef,
args: &[RuntimeValue],
externals: &mut E,
) -> Result<Option<RuntimeValue>, Trap> {
check_function_args(func.signature(), &args)?;
match *func.as_internal() {
FuncInstanceInternal::Internal { .. } => {
let mut interpreter = Interpreter::new(func, args)?;
interpreter.start_execution(externals)
}
FuncInstanceInternal::Host {
ref host_func_index,
..
} => externals.invoke_index(*host_func_index, args.into()),
}
}
/// Invoke this function.
///
/// # Errors
///
/// Returns `Err` if `args` types is not match function [`signature`] or
/// if [`Trap`] at execution time occured.
///
/// [`signature`]: #method.signature
/// [`Trap`]: #enum.Trap.html
pub fn invoke<E: Externals>(
func: &FuncRef,
args: &[RuntimeValue],
externals: &mut E,
) -> Result<Option<RuntimeValue>, Trap> {
check_function_args(func.signature(), &args)?;
match *func.as_internal() {
FuncInstanceInternal::Internal { .. } => {
let mut interpreter = Interpreter::new(func, args)?;
interpreter.start_execution(externals)
}
FuncInstanceInternal::Host {
ref host_func_index,
..
} => externals.invoke_index(*host_func_index, args.into()),
}
}
/// Invoke the function, get a resumable handle. This handle can then be used to [`start_execution`]. If a
/// Host trap happens, caller can use [`resume_execution`] to feed the expected return value back in, and then
/// continue the execution.
///
/// This is an experimental API, and this functionality may not be available in other WebAssembly engines.
///
/// # Errors
///
/// Returns `Err` if `args` types is not match function [`signature`].
///
/// [`signature`]: #method.signature
/// [`Trap`]: #enum.Trap.html
/// [`start_execution`]: struct.FuncInvocation.html#method.start_execution
/// [`resume_execution`]: struct.FuncInvocation.html#method.resume_execution
pub fn invoke_resumable<'args>(
func: &FuncRef,
args: &'args [RuntimeValue],
) -> Result<FuncInvocation<'args>, Trap> {
check_function_args(func.signature(), &args)?;
match *func.as_internal() {
FuncInstanceInternal::Internal { .. } => {
let interpreter = Interpreter::new(func, args)?;
Ok(FuncInvocation {
kind: FuncInvocationKind::Internal(interpreter),
})
}
FuncInstanceInternal::Host {
ref host_func_index,
..
} => {
Ok(FuncInvocation {
kind: FuncInvocationKind::Host {
args,
host_func_index: *host_func_index,
finished: false,
},
})
},
}
}
/// Invoke the function, get a resumable handle. This handle can then be used to [`start_execution`]. If a
/// Host trap happens, caller can use [`resume_execution`] to feed the expected return value back in, and then
/// continue the execution.
///
/// This is an experimental API, and this functionality may not be available in other WebAssembly engines.
///
/// # Errors
///
/// Returns `Err` if `args` types is not match function [`signature`].
///
/// [`signature`]: #method.signature
/// [`Trap`]: #enum.Trap.html
/// [`start_execution`]: struct.FuncInvocation.html#method.start_execution
/// [`resume_execution`]: struct.FuncInvocation.html#method.resume_execution
pub fn invoke_resumable<'args>(
func: &FuncRef,
args: &'args [RuntimeValue],
) -> Result<FuncInvocation<'args>, Trap> {
check_function_args(func.signature(), &args)?;
match *func.as_internal() {
FuncInstanceInternal::Internal { .. } => {
let interpreter = Interpreter::new(func, args)?;
Ok(FuncInvocation {
kind: FuncInvocationKind::Internal(interpreter),
})
}
FuncInstanceInternal::Host {
ref host_func_index,
..
} => Ok(FuncInvocation {
kind: FuncInvocationKind::Host {
args,
host_func_index: *host_func_index,
finished: false,
},
}),
}
}
}
/// A resumable invocation error.
#[derive(Debug)]
pub enum ResumableError {
/// Trap happened.
Trap(Trap),
/// The invocation is not resumable.
///
/// Invocations are only resumable if a host function is called, and the host function returns a trap of `Host` kind. For other cases, this error will be returned. This includes:
/// - The invocation is directly a host function.
/// - The invocation has not been started.
/// - The invocation returns normally or returns any trap other than `Host` kind.
///
/// This error is returned by [`resume_execution`].
///
/// [`resume_execution`]: struct.FuncInvocation.html#method.resume_execution
NotResumable,
/// The invocation has already been started.
///
/// This error is returned by [`start_execution`].
///
/// [`start_execution`]: struct.FuncInvocation.html#method.start_execution
AlreadyStarted,
/// Trap happened.
Trap(Trap),
/// The invocation is not resumable.
///
/// Invocations are only resumable if a host function is called, and the host function returns a trap of `Host` kind. For other cases, this error will be returned. This includes:
/// - The invocation is directly a host function.
/// - The invocation has not been started.
/// - The invocation returns normally or returns any trap other than `Host` kind.
///
/// This error is returned by [`resume_execution`].
///
/// [`resume_execution`]: struct.FuncInvocation.html#method.resume_execution
NotResumable,
/// The invocation has already been started.
///
/// This error is returned by [`start_execution`].
///
/// [`start_execution`]: struct.FuncInvocation.html#method.start_execution
AlreadyStarted,
}
impl From<Trap> for ResumableError {
fn from(trap: Trap) -> Self {
ResumableError::Trap(trap)
}
fn from(trap: Trap) -> Self {
ResumableError::Trap(trap)
}
}
/// A resumable invocation handle. This struct is returned by `FuncInstance::invoke_resumable`.
pub struct FuncInvocation<'args> {
kind: FuncInvocationKind<'args>,
kind: FuncInvocationKind<'args>,
}
enum FuncInvocationKind<'args> {
Internal(Interpreter),
Host {
args: &'args [RuntimeValue],
host_func_index: usize,
finished: bool
},
Internal(Interpreter),
Host {
args: &'args [RuntimeValue],
host_func_index: usize,
finished: bool,
},
}
impl<'args> FuncInvocation<'args> {
/// Whether this invocation is currently resumable.
pub fn is_resumable(&self) -> bool {
match &self.kind {
&FuncInvocationKind::Internal(ref interpreter) => interpreter.state().is_resumable(),
&FuncInvocationKind::Host { .. } => false,
}
}
/// Whether this invocation is currently resumable.
pub fn is_resumable(&self) -> bool {
match &self.kind {
&FuncInvocationKind::Internal(ref interpreter) => interpreter.state().is_resumable(),
&FuncInvocationKind::Host { .. } => false,
}
}
/// If the invocation is resumable, the expected return value type to be feed back in.
pub fn resumable_value_type(&self) -> Option<ValueType> {
match &self.kind {
&FuncInvocationKind::Internal(ref interpreter) => {
match interpreter.state() {
&InterpreterState::Resumable(ref value_type) => value_type.clone(),
_ => None,
}
},
&FuncInvocationKind::Host { .. } => None,
}
}
/// If the invocation is resumable, the expected return value type to be feed back in.
pub fn resumable_value_type(&self) -> Option<ValueType> {
match &self.kind {
&FuncInvocationKind::Internal(ref interpreter) => match interpreter.state() {
&InterpreterState::Resumable(ref value_type) => value_type.clone(),
_ => None,
},
&FuncInvocationKind::Host { .. } => None,
}
}
/// Start the invocation execution.
pub fn start_execution<'externals, E: Externals + 'externals>(&mut self, externals: &'externals mut E) -> Result<Option<RuntimeValue>, ResumableError> {
match self.kind {
FuncInvocationKind::Internal(ref mut interpreter) => {
if interpreter.state() != &InterpreterState::Initialized {
return Err(ResumableError::AlreadyStarted);
}
Ok(interpreter.start_execution(externals)?)
},
FuncInvocationKind::Host { ref args, ref mut finished, ref host_func_index } => {
if *finished {
return Err(ResumableError::AlreadyStarted);
}
*finished = true;
Ok(externals.invoke_index(*host_func_index, args.clone().into())?)
},
}
}
/// Start the invocation execution.
pub fn start_execution<'externals, E: Externals + 'externals>(
&mut self,
externals: &'externals mut E,
) -> Result<Option<RuntimeValue>, ResumableError> {
match self.kind {
FuncInvocationKind::Internal(ref mut interpreter) => {
if interpreter.state() != &InterpreterState::Initialized {
return Err(ResumableError::AlreadyStarted);
}
Ok(interpreter.start_execution(externals)?)
}
FuncInvocationKind::Host {
ref args,
ref mut finished,
ref host_func_index,
} => {
if *finished {
return Err(ResumableError::AlreadyStarted);
}
*finished = true;
Ok(externals.invoke_index(*host_func_index, args.clone().into())?)
}
}
}
/// Resume an execution if a previous trap of Host kind happened.
///
/// `return_val` must be of the value type [`resumable_value_type`], defined by the host function import. Otherwise,
/// `UnexpectedSignature` trap will be returned. The current invocation must also be resumable
/// [`is_resumable`]. Otherwise, a `NotResumable` error will be returned.
///
/// [`resumable_value_type`]: #method.resumable_value_type
/// [`is_resumable`]: #method.is_resumable
pub fn resume_execution<'externals, E: Externals + 'externals>(&mut self, return_val: Option<RuntimeValue>, externals: &'externals mut E) -> Result<Option<RuntimeValue>, ResumableError> {
match self.kind {
FuncInvocationKind::Internal(ref mut interpreter) => {
if !interpreter.state().is_resumable() {
return Err(ResumableError::AlreadyStarted);
}
Ok(interpreter.resume_execution(return_val, externals)?)
},
FuncInvocationKind::Host { .. } => {
return Err(ResumableError::NotResumable);
},
}
}
/// Resume an execution if a previous trap of Host kind happened.
///
/// `return_val` must be of the value type [`resumable_value_type`], defined by the host function import. Otherwise,
/// `UnexpectedSignature` trap will be returned. The current invocation must also be resumable
/// [`is_resumable`]. Otherwise, a `NotResumable` error will be returned.
///
/// [`resumable_value_type`]: #method.resumable_value_type
/// [`is_resumable`]: #method.is_resumable
pub fn resume_execution<'externals, E: Externals + 'externals>(
&mut self,
return_val: Option<RuntimeValue>,
externals: &'externals mut E,
) -> Result<Option<RuntimeValue>, ResumableError> {
match self.kind {
FuncInvocationKind::Internal(ref mut interpreter) => {
if !interpreter.state().is_resumable() {
return Err(ResumableError::AlreadyStarted);
}
Ok(interpreter.resume_execution(return_val, externals)?)
}
FuncInvocationKind::Host { .. } => {
return Err(ResumableError::NotResumable);
}
}
}
}
#[derive(Clone, Debug)]
pub struct FuncBody {
pub locals: Vec<Local>,
pub code: isa::Instructions,
pub locals: Vec<Local>,
pub code: isa::Instructions,
}

View File

@ -1,9 +1,9 @@
use alloc::rc::Rc;
use core::cell::Cell;
use parity_wasm::elements::ValueType as EValueType;
use types::ValueType;
use value::RuntimeValue;
use Error;
use types::ValueType;
use parity_wasm::elements::{ValueType as EValueType};
/// Reference to a global variable (See [`GlobalInstance`] for details).
///
@ -14,10 +14,10 @@ use parity_wasm::elements::{ValueType as EValueType};
pub struct GlobalRef(Rc<GlobalInstance>);
impl ::core::ops::Deref for GlobalRef {
type Target = GlobalInstance;
fn deref(&self) -> &GlobalInstance {
&self.0
}
type Target = GlobalInstance;
fn deref(&self) -> &GlobalInstance {
&self.0
}
}
/// Runtime representation of a global variable (or `global` for short).
@ -33,57 +33,59 @@ impl ::core::ops::Deref for GlobalRef {
/// [`I64`]: enum.RuntimeValue.html#variant.I64
#[derive(Debug)]
pub struct GlobalInstance {
val: Cell<RuntimeValue>,
mutable: bool,
val: Cell<RuntimeValue>,
mutable: bool,
}
impl GlobalInstance {
/// Allocate a global variable instance.
///
/// Since it is possible to export only immutable globals,
/// users likely want to set `mutable` to `false`.
pub fn alloc(val: RuntimeValue, mutable: bool) -> GlobalRef {
GlobalRef(Rc::new(GlobalInstance {
val: Cell::new(val),
mutable,
}))
}
/// Allocate a global variable instance.
///
/// Since it is possible to export only immutable globals,
/// users likely want to set `mutable` to `false`.
pub fn alloc(val: RuntimeValue, mutable: bool) -> GlobalRef {
GlobalRef(Rc::new(GlobalInstance {
val: Cell::new(val),
mutable,
}))
}
/// Change the value of this global variable.
///
/// # Errors
///
/// Returns `Err` if this global isn't mutable or if
/// type of `val` doesn't match global's type.
pub fn set(&self, val: RuntimeValue) -> Result<(), Error> {
if !self.mutable {
return Err(Error::Global("Attempt to change an immutable variable".into()));
}
if self.value_type() != val.value_type() {
return Err(Error::Global("Attempt to change variable type".into()));
}
self.val.set(val);
Ok(())
}
/// Change the value of this global variable.
///
/// # Errors
///
/// Returns `Err` if this global isn't mutable or if
/// type of `val` doesn't match global's type.
pub fn set(&self, val: RuntimeValue) -> Result<(), Error> {
if !self.mutable {
return Err(Error::Global(
"Attempt to change an immutable variable".into(),
));
}
if self.value_type() != val.value_type() {
return Err(Error::Global("Attempt to change variable type".into()));
}
self.val.set(val);
Ok(())
}
/// Get the value of this global variable.
pub fn get(&self) -> RuntimeValue {
self.val.get()
}
/// Get the value of this global variable.
pub fn get(&self) -> RuntimeValue {
self.val.get()
}
/// Returns if this global variable is mutable.
///
/// Note: Imported and/or exported globals are always immutable.
pub fn is_mutable(&self) -> bool {
self.mutable
}
/// Returns if this global variable is mutable.
///
/// Note: Imported and/or exported globals are always immutable.
pub fn is_mutable(&self) -> bool {
self.mutable
}
/// Returns value type of this global variable.
pub fn value_type(&self) -> ValueType {
self.val.get().value_type()
}
/// Returns value type of this global variable.
pub fn value_type(&self) -> ValueType {
self.val.get().value_type()
}
pub(crate) fn elements_value_type(&self) -> EValueType {
self.value_type().into_elements()
}
pub(crate) fn elements_value_type(&self) -> EValueType {
self.value_type().into_elements()
}
}

View File

@ -1,6 +1,6 @@
use core::any::TypeId;
use value::{RuntimeValue, FromRuntimeValue};
use {TrapKind, Trap};
use value::{FromRuntimeValue, RuntimeValue};
use {Trap, TrapKind};
/// Wrapper around slice of [`RuntimeValue`] for using it
/// as an argument list conveniently.
@ -10,55 +10,64 @@ use {TrapKind, Trap};
pub struct RuntimeArgs<'a>(&'a [RuntimeValue]);
impl<'a> From<&'a [RuntimeValue]> for RuntimeArgs<'a> {
fn from(inner: &'a [RuntimeValue]) -> Self {
RuntimeArgs(inner)
}
fn from(inner: &'a [RuntimeValue]) -> Self {
RuntimeArgs(inner)
}
}
impl<'a> AsRef<[RuntimeValue]> for RuntimeArgs<'a> {
fn as_ref(&self) -> &[RuntimeValue] {
self.0
}
fn as_ref(&self) -> &[RuntimeValue] {
self.0
}
}
impl<'a> RuntimeArgs<'a> {
/// Extract argument by index `idx`.
///
/// # Errors
///
/// Returns `Err` if cast is invalid or not enough arguments.
pub fn nth_checked<T>(&self, idx: usize) -> Result<T, Trap> where T: FromRuntimeValue {
Ok(self.nth_value_checked(idx)?.try_into().ok_or_else(|| TrapKind::UnexpectedSignature)?)
}
/// Extract argument by index `idx`.
///
/// # Errors
///
/// Returns `Err` if cast is invalid or not enough arguments.
pub fn nth_checked<T>(&self, idx: usize) -> Result<T, Trap>
where
T: FromRuntimeValue,
{
Ok(self
.nth_value_checked(idx)?
.try_into()
.ok_or_else(|| TrapKind::UnexpectedSignature)?)
}
/// Extract argument as a [`RuntimeValue`] by index `idx`.
///
/// # Errors
///
/// Returns `Err` if this list has not enough arguments.
///
/// [`RuntimeValue`]: enum.RuntimeValue.html
pub fn nth_value_checked(&self, idx: usize) -> Result<RuntimeValue, Trap> {
if self.0.len() <= idx {
return Err(TrapKind::UnexpectedSignature.into());
}
Ok(self.0[idx])
}
/// Extract argument as a [`RuntimeValue`] by index `idx`.
///
/// # Errors
///
/// Returns `Err` if this list has not enough arguments.
///
/// [`RuntimeValue`]: enum.RuntimeValue.html
pub fn nth_value_checked(&self, idx: usize) -> Result<RuntimeValue, Trap> {
if self.0.len() <= idx {
return Err(TrapKind::UnexpectedSignature.into());
}
Ok(self.0[idx])
}
/// Extract argument by index `idx`.
///
/// # Panics
///
/// Panics if cast is invalid or not enough arguments.
pub fn nth<T>(&self, idx: usize) -> T where T: FromRuntimeValue {
let value = self.nth_value_checked(idx).expect("Invalid argument index");
value.try_into().expect("Unexpected argument type")
}
/// Extract argument by index `idx`.
///
/// # Panics
///
/// Panics if cast is invalid or not enough arguments.
pub fn nth<T>(&self, idx: usize) -> T
where
T: FromRuntimeValue,
{
let value = self.nth_value_checked(idx).expect("Invalid argument index");
value.try_into().expect("Unexpected argument type")
}
/// Total number of arguments
pub fn len(&self) -> usize {
self.0.len()
}
/// Total number of arguments
pub fn len(&self) -> usize {
self.0.len()
}
}
/// Trait that allows the host to return custom error.
@ -99,31 +108,31 @@ impl<'a> RuntimeArgs<'a> {
/// }
/// ```
pub trait HostError: 'static + ::core::fmt::Display + ::core::fmt::Debug + Send + Sync {
#[doc(hidden)]
fn __private_get_type_id__(&self) -> TypeId {
TypeId::of::<Self>()
}
#[doc(hidden)]
fn __private_get_type_id__(&self) -> TypeId {
TypeId::of::<Self>()
}
}
impl HostError {
/// Attempt to downcast this `HostError` to a concrete type by reference.
pub fn downcast_ref<T: HostError>(&self) -> Option<&T> {
if self.__private_get_type_id__() == TypeId::of::<T>() {
unsafe { Some(&*(self as *const HostError as *const T)) }
} else {
None
}
}
/// Attempt to downcast this `HostError` to a concrete type by reference.
pub fn downcast_ref<T: HostError>(&self) -> Option<&T> {
if self.__private_get_type_id__() == TypeId::of::<T>() {
unsafe { Some(&*(self as *const HostError as *const T)) }
} else {
None
}
}
/// Attempt to downcast this `HostError` to a concrete type by mutable
/// reference.
pub fn downcast_mut<T: HostError>(&mut self) -> Option<&mut T> {
if self.__private_get_type_id__() == TypeId::of::<T>() {
unsafe { Some(&mut *(self as *mut HostError as *mut T)) }
} else {
None
}
}
/// Attempt to downcast this `HostError` to a concrete type by mutable
/// reference.
pub fn downcast_mut<T: HostError>(&mut self) -> Option<&mut T> {
if self.__private_get_type_id__() == TypeId::of::<T>() {
unsafe { Some(&mut *(self as *mut HostError as *mut T)) }
} else {
None
}
}
}
/// Trait that allows to implement host functions.
@ -189,13 +198,13 @@ impl HostError {
/// ))
/// }
/// };
///
///
/// if !self.check_signature(index, signature) {
/// return Err(Error::Instantiation(
/// format!("Export {} has a bad signature", field_name)
/// ));
/// }
///
///
/// Ok(FuncInstance::alloc_host(
/// Signature::new(&[ValueType::I32, ValueType::I32][..], Some(ValueType::I32)),
/// index,
@ -204,12 +213,12 @@ impl HostError {
/// }
/// ```
pub trait Externals {
/// Perform invoke of a host function by specified `index`.
fn invoke_index(
&mut self,
index: usize,
args: RuntimeArgs,
) -> Result<Option<RuntimeValue>, Trap>;
/// Perform invoke of a host function by specified `index`.
fn invoke_index(
&mut self,
index: usize,
args: RuntimeArgs,
) -> Result<Option<RuntimeValue>, Trap>;
}
/// Implementation of [`Externals`] that just traps on [`invoke_index`].
@ -219,35 +228,34 @@ pub trait Externals {
pub struct NopExternals;
impl Externals for NopExternals {
fn invoke_index(
&mut self,
_index: usize,
_args: RuntimeArgs,
) -> Result<Option<RuntimeValue>, Trap> {
Err(TrapKind::Unreachable.into())
}
fn invoke_index(
&mut self,
_index: usize,
_args: RuntimeArgs,
) -> Result<Option<RuntimeValue>, Trap> {
Err(TrapKind::Unreachable.into())
}
}
#[cfg(test)]
mod tests {
use value::RuntimeValue;
use super::{RuntimeArgs, HostError};
use super::{HostError, RuntimeArgs};
use value::RuntimeValue;
#[test]
fn i32_runtime_args() {
let args: RuntimeArgs = (&[RuntimeValue::I32(0)][..]).into();
let val: i32 = args.nth_checked(0).unwrap();
assert_eq!(val, 0);
}
#[test]
fn i32_runtime_args() {
let args: RuntimeArgs = (&[RuntimeValue::I32(0)][..]).into();
let val: i32 = args.nth_checked(0).unwrap();
assert_eq!(val, 0);
}
#[test]
fn i64_invalid_arg_cast() {
let args: RuntimeArgs = (&[RuntimeValue::I64(90534534545322)][..]).into();
assert!(args.nth_checked::<i32>(0).is_err());
}
#[test]
fn i64_invalid_arg_cast() {
let args: RuntimeArgs = (&[RuntimeValue::I64(90534534545322)][..]).into();
assert!(args.nth_checked::<i32>(0).is_err());
}
// Tests that `HostError` trait is object safe.
fn _host_error_is_object_safe(_: &HostError) {
}
// Tests that `HostError` trait is object safe.
fn _host_error_is_object_safe(_: &HostError) {}
}

View File

@ -1,20 +1,19 @@
#[allow(unused_imports)]
use alloc::prelude::*;
#[cfg(feature = "std")]
use std::collections::HashMap;
#[cfg(not(feature = "std"))]
use hashmap_core::HashMap;
#[cfg(feature = "std")]
use std::collections::HashMap;
use func::FuncRef;
use global::GlobalRef;
use memory::MemoryRef;
use func::FuncRef;
use table::TableRef;
use module::ModuleRef;
use types::{GlobalDescriptor, TableDescriptor, MemoryDescriptor};
use table::TableRef;
use types::{GlobalDescriptor, MemoryDescriptor, TableDescriptor};
use {Error, Signature};
/// Resolver of a module's dependencies.
///
/// A module have dependencies in a form of a list of imports (i.e.
@ -27,56 +26,55 @@ use {Error, Signature};
///
/// [`ImportsBuilder`]: struct.ImportsBuilder.html
pub trait ImportResolver {
/// Resolve a function.
///
/// Returned function should match given `signature`, i.e. all parameter types and return value should have exact match.
/// Otherwise, link-time error will occur.
fn resolve_func(
&self,
_module_name: &str,
field_name: &str,
_signature: &Signature,
) -> Result<FuncRef, Error>;
/// Resolve a function.
///
/// Returned function should match given `signature`, i.e. all parameter types and return value should have exact match.
/// Otherwise, link-time error will occur.
fn resolve_func(
&self,
_module_name: &str,
field_name: &str,
_signature: &Signature,
) -> Result<FuncRef, Error>;
/// Resolve a global variable.
///
/// Returned global should match given `descriptor`, i.e. type and mutability
/// should match. Otherwise, link-time error will occur.
fn resolve_global(
&self,
module_name: &str,
field_name: &str,
descriptor: &GlobalDescriptor,
) -> Result<GlobalRef, Error>;
/// Resolve a global variable.
///
/// Returned global should match given `descriptor`, i.e. type and mutability
/// should match. Otherwise, link-time error will occur.
fn resolve_global(
&self,
module_name: &str,
field_name: &str,
descriptor: &GlobalDescriptor,
) -> Result<GlobalRef, Error>;
/// Resolve a memory.
///
/// Returned memory should match requested memory (described by the `descriptor`),
/// i.e. initial size of a returned memory should be equal or larger than requested memory.
/// Furthermore, if requested memory have maximum size, returned memory either should have
/// equal or larger maximum size or have no maximum size at all.
/// If returned memory doesn't match the requested then link-time error will occur.
fn resolve_memory(
&self,
module_name: &str,
field_name: &str,
descriptor: &MemoryDescriptor,
) -> Result<MemoryRef, Error>;
/// Resolve a memory.
///
/// Returned memory should match requested memory (described by the `descriptor`),
/// i.e. initial size of a returned memory should be equal or larger than requested memory.
/// Furthermore, if requested memory have maximum size, returned memory either should have
/// equal or larger maximum size or have no maximum size at all.
/// If returned memory doesn't match the requested then link-time error will occur.
fn resolve_memory(
&self,
module_name: &str,
field_name: &str,
descriptor: &MemoryDescriptor,
) -> Result<MemoryRef, Error>;
/// Resolve a table.
///
/// Returned table should match requested table (described by the `descriptor`),
/// i.e. initial size of a returned table should be equal or larger than requested table.
/// Furthermore, if requested memory have maximum size, returned memory either should have
/// equal or larger maximum size or have no maximum size at all.
/// If returned table doesn't match the requested then link-time error will occur.
fn resolve_table(
&self,
module_name: &str,
field_name: &str,
descriptor: &TableDescriptor,
) -> Result<TableRef, Error>;
/// Resolve a table.
///
/// Returned table should match requested table (described by the `descriptor`),
/// i.e. initial size of a returned table should be equal or larger than requested table.
/// Furthermore, if requested memory have maximum size, returned memory either should have
/// equal or larger maximum size or have no maximum size at all.
/// If returned table doesn't match the requested then link-time error will occur.
fn resolve_table(
&self,
module_name: &str,
field_name: &str,
descriptor: &TableDescriptor,
) -> Result<TableRef, Error>;
}
/// Convenience builder of [`ImportResolver`].
@ -108,216 +106,208 @@ pub trait ImportResolver {
/// [`ImportResolver`]: trait.ImportResolver.html
/// [`ModuleImportResolver`]: trait.ModuleImportResolver.html
pub struct ImportsBuilder<'a> {
modules: HashMap<String, &'a ModuleImportResolver>,
modules: HashMap<String, &'a ModuleImportResolver>,
}
impl<'a> Default for ImportsBuilder<'a> {
fn default() -> Self {
Self::new()
}
fn default() -> Self {
Self::new()
}
}
impl<'a> ImportsBuilder<'a> {
/// Create an empty `ImportsBuilder`.
pub fn new() -> ImportsBuilder<'a> {
ImportsBuilder { modules: HashMap::new() }
}
/// Create an empty `ImportsBuilder`.
pub fn new() -> ImportsBuilder<'a> {
ImportsBuilder {
modules: HashMap::new(),
}
}
/// Register an resolver by a name.
pub fn with_resolver<N: Into<String>>(
mut self,
name: N,
resolver: &'a ModuleImportResolver,
) -> Self {
self.modules.insert(name.into(), resolver);
self
}
/// Register an resolver by a name.
pub fn with_resolver<N: Into<String>>(
mut self,
name: N,
resolver: &'a ModuleImportResolver,
) -> Self {
self.modules.insert(name.into(), resolver);
self
}
/// Register an resolver by a name.
///
/// Mutable borrowed version.
pub fn push_resolver<N: Into<String>>(&mut self, name: N, resolver: &'a ModuleImportResolver) {
self.modules.insert(name.into(), resolver);
}
/// Register an resolver by a name.
///
/// Mutable borrowed version.
pub fn push_resolver<N: Into<String>>(&mut self, name: N, resolver: &'a ModuleImportResolver) {
self.modules.insert(name.into(), resolver);
}
fn resolver(&self, name: &str) -> Option<&ModuleImportResolver> {
self.modules.get(name).cloned()
}
fn resolver(&self, name: &str) -> Option<&ModuleImportResolver> {
self.modules.get(name).cloned()
}
}
impl<'a> ImportResolver for ImportsBuilder<'a> {
fn resolve_func(
&self,
module_name: &str,
field_name: &str,
signature: &Signature,
) -> Result<FuncRef, Error> {
self.resolver(module_name).ok_or_else(||
Error::Instantiation(format!("Module {} not found", module_name))
)?.resolve_func(field_name, signature)
}
fn resolve_func(
&self,
module_name: &str,
field_name: &str,
signature: &Signature,
) -> Result<FuncRef, Error> {
self.resolver(module_name)
.ok_or_else(|| Error::Instantiation(format!("Module {} not found", module_name)))?
.resolve_func(field_name, signature)
}
fn resolve_global(
&self,
module_name: &str,
field_name: &str,
global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
self.resolver(module_name).ok_or_else(||
Error::Instantiation(format!("Module {} not found", module_name))
)?.resolve_global(field_name, global_type)
}
fn resolve_global(
&self,
module_name: &str,
field_name: &str,
global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
self.resolver(module_name)
.ok_or_else(|| Error::Instantiation(format!("Module {} not found", module_name)))?
.resolve_global(field_name, global_type)
}
fn resolve_memory(
&self,
module_name: &str,
field_name: &str,
memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
self.resolver(module_name).ok_or_else(||
Error::Instantiation(format!("Module {} not found", module_name))
)?.resolve_memory(field_name, memory_type)
}
fn resolve_memory(
&self,
module_name: &str,
field_name: &str,
memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
self.resolver(module_name)
.ok_or_else(|| Error::Instantiation(format!("Module {} not found", module_name)))?
.resolve_memory(field_name, memory_type)
}
fn resolve_table(
&self,
module_name: &str,
field_name: &str,
table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
self.resolver(module_name).ok_or_else(||
Error::Instantiation(format!("Module {} not found", module_name))
)?.resolve_table(field_name, table_type)
}
fn resolve_table(
&self,
module_name: &str,
field_name: &str,
table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
self.resolver(module_name)
.ok_or_else(|| Error::Instantiation(format!("Module {} not found", module_name)))?
.resolve_table(field_name, table_type)
}
}
/// Version of [`ImportResolver`] specialized for a single module.
///
/// [`ImportResolver`]: trait.ImportResolver.html
pub trait ModuleImportResolver {
/// Resolve a function.
///
/// See [`ImportResolver::resolve_func`] for details.
///
/// [`ImportResolver::resolve_func`]: trait.ImportResolver.html#tymethod.resolve_func
fn resolve_func(
&self,
field_name: &str,
_signature: &Signature,
) -> Result<FuncRef, Error> {
Err(Error::Instantiation(
format!("Export {} not found", field_name),
))
}
/// Resolve a function.
///
/// See [`ImportResolver::resolve_func`] for details.
///
/// [`ImportResolver::resolve_func`]: trait.ImportResolver.html#tymethod.resolve_func
fn resolve_func(&self, field_name: &str, _signature: &Signature) -> Result<FuncRef, Error> {
Err(Error::Instantiation(format!(
"Export {} not found",
field_name
)))
}
/// Resolve a global variable.
///
/// See [`ImportResolver::resolve_global`] for details.
///
/// [`ImportResolver::resolve_global`]: trait.ImportResolver.html#tymethod.resolve_global
fn resolve_global(
&self,
field_name: &str,
_global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
Err(Error::Instantiation(
format!("Export {} not found", field_name),
))
}
/// Resolve a global variable.
///
/// See [`ImportResolver::resolve_global`] for details.
///
/// [`ImportResolver::resolve_global`]: trait.ImportResolver.html#tymethod.resolve_global
fn resolve_global(
&self,
field_name: &str,
_global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
Err(Error::Instantiation(format!(
"Export {} not found",
field_name
)))
}
/// Resolve a memory.
///
/// See [`ImportResolver::resolve_memory`] for details.
///
/// [`ImportResolver::resolve_memory`]: trait.ImportResolver.html#tymethod.resolve_memory
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
Err(Error::Instantiation(
format!("Export {} not found", field_name),
))
}
/// Resolve a memory.
///
/// See [`ImportResolver::resolve_memory`] for details.
///
/// [`ImportResolver::resolve_memory`]: trait.ImportResolver.html#tymethod.resolve_memory
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
Err(Error::Instantiation(format!(
"Export {} not found",
field_name
)))
}
/// Resolve a table.
///
/// See [`ImportResolver::resolve_table`] for details.
///
/// [`ImportResolver::resolve_table`]: trait.ImportResolver.html#tymethod.resolve_table
fn resolve_table(
&self,
field_name: &str,
_table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
Err(Error::Instantiation(
format!("Export {} not found", field_name),
))
}
/// Resolve a table.
///
/// See [`ImportResolver::resolve_table`] for details.
///
/// [`ImportResolver::resolve_table`]: trait.ImportResolver.html#tymethod.resolve_table
fn resolve_table(
&self,
field_name: &str,
_table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
Err(Error::Instantiation(format!(
"Export {} not found",
field_name
)))
}
}
impl ModuleImportResolver for ModuleRef {
fn resolve_func(
&self,
field_name: &str,
_signature: &Signature,
) -> Result<FuncRef, Error> {
Ok(self.export_by_name(field_name)
.ok_or_else(|| {
Error::Instantiation(format!("Export {} not found", field_name))
})?
.as_func()
.cloned()
.ok_or_else(|| {
Error::Instantiation(format!("Export {} is not a function", field_name))
})?)
}
fn resolve_func(&self, field_name: &str, _signature: &Signature) -> Result<FuncRef, Error> {
Ok(self
.export_by_name(field_name)
.ok_or_else(|| Error::Instantiation(format!("Export {} not found", field_name)))?
.as_func()
.cloned()
.ok_or_else(|| {
Error::Instantiation(format!("Export {} is not a function", field_name))
})?)
}
fn resolve_global(
&self,
field_name: &str,
_global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
Ok(self.export_by_name(field_name)
.ok_or_else(|| {
Error::Instantiation(format!("Export {} not found", field_name))
})?
.as_global()
.cloned()
.ok_or_else(|| {
Error::Instantiation(format!("Export {} is not a global", field_name))
})?)
}
fn resolve_global(
&self,
field_name: &str,
_global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
Ok(self
.export_by_name(field_name)
.ok_or_else(|| Error::Instantiation(format!("Export {} not found", field_name)))?
.as_global()
.cloned()
.ok_or_else(|| {
Error::Instantiation(format!("Export {} is not a global", field_name))
})?)
}
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
Ok(self.export_by_name(field_name)
.ok_or_else(|| {
Error::Instantiation(format!("Export {} not found", field_name))
})?
.as_memory()
.cloned()
.ok_or_else(|| {
Error::Instantiation(format!("Export {} is not a memory", field_name))
})?)
}
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
Ok(self
.export_by_name(field_name)
.ok_or_else(|| Error::Instantiation(format!("Export {} not found", field_name)))?
.as_memory()
.cloned()
.ok_or_else(|| {
Error::Instantiation(format!("Export {} is not a memory", field_name))
})?)
}
fn resolve_table(
&self,
field_name: &str,
_table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
Ok(self.export_by_name(field_name)
.ok_or_else(|| {
Error::Instantiation(format!("Export {} not found", field_name))
})?
.as_table()
.cloned()
.ok_or_else(|| {
Error::Instantiation(format!("Export {} is not a table", field_name))
})?)
}
fn resolve_table(
&self,
field_name: &str,
_table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
Ok(self
.export_by_name(field_name)
.ok_or_else(|| Error::Instantiation(format!("Export {} not found", field_name)))?
.as_table()
.cloned()
.ok_or_else(|| Error::Instantiation(format!("Export {} is not a table", field_name)))?)
}
}

1198
src/isa.rs

File diff suppressed because it is too large Load Diff

View File

@ -95,9 +95,7 @@
//! ```
#![warn(missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]
//// alloc is required in no_std
#![cfg_attr(not(feature = "std"), feature(alloc))]
@ -117,11 +115,11 @@ extern crate wabt;
#[macro_use]
extern crate assert_matches;
extern crate parity_wasm;
extern crate byteorder;
#[cfg(not(feature = "std"))]
extern crate hashmap_core;
extern crate memory_units as memory_units_crate;
extern crate parity_wasm;
#[allow(unused_imports)]
use alloc::prelude::*;
@ -138,32 +136,32 @@ extern crate libm;
/// Traps can't be handled by WebAssembly code, but are reported to the embedder.
#[derive(Debug)]
pub struct Trap {
kind: TrapKind,
kind: TrapKind,
}
impl Trap {
/// Create new trap.
pub fn new(kind: TrapKind) -> Trap {
Trap { kind }
}
/// Create new trap.
pub fn new(kind: TrapKind) -> Trap {
Trap { kind }
}
/// Returns kind of this trap.
pub fn kind(&self) -> &TrapKind {
&self.kind
}
/// Returns kind of this trap.
pub fn kind(&self) -> &TrapKind {
&self.kind
}
}
impl fmt::Display for Trap {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Trap: {:?}", self.kind)
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Trap: {:?}", self.kind)
}
}
#[cfg(feature = "std")]
impl error::Error for Trap {
fn description(&self) -> &str {
"runtime trap"
}
fn description(&self) -> &str {
"runtime trap"
}
}
/// Error type which can be thrown by wasm code or by host environment.
@ -173,393 +171,393 @@ impl error::Error for Trap {
/// [`Trap`]: struct.Trap.html
#[derive(Debug)]
pub enum TrapKind {
/// Wasm code executed `unreachable` opcode.
///
/// `unreachable` is a special opcode which always traps upon execution.
/// This opcode have a similar purpose as `ud2` in x86.
Unreachable,
/// Wasm code executed `unreachable` opcode.
///
/// `unreachable` is a special opcode which always traps upon execution.
/// This opcode have a similar purpose as `ud2` in x86.
Unreachable,
/// Attempt to load or store at the address which
/// lies outside of bounds of the memory.
///
/// Since addresses are interpreted as unsigned integers, out of bounds access
/// can't happen with negative addresses (i.e. they will always wrap).
MemoryAccessOutOfBounds,
/// Attempt to load or store at the address which
/// lies outside of bounds of the memory.
///
/// Since addresses are interpreted as unsigned integers, out of bounds access
/// can't happen with negative addresses (i.e. they will always wrap).
MemoryAccessOutOfBounds,
/// Attempt to access table element at index which
/// lies outside of bounds.
///
/// This typically can happen when `call_indirect` is executed
/// with index that lies out of bounds.
///
/// Since indexes are interpreted as unsinged integers, out of bounds access
/// can't happen with negative indexes (i.e. they will always wrap).
TableAccessOutOfBounds,
/// Attempt to access table element at index which
/// lies outside of bounds.
///
/// This typically can happen when `call_indirect` is executed
/// with index that lies out of bounds.
///
/// Since indexes are interpreted as unsinged integers, out of bounds access
/// can't happen with negative indexes (i.e. they will always wrap).
TableAccessOutOfBounds,
/// Attempt to access table element which is uninitialized (i.e. `None`).
///
/// This typically can happen when `call_indirect` is executed.
ElemUninitialized,
/// Attempt to access table element which is uninitialized (i.e. `None`).
///
/// This typically can happen when `call_indirect` is executed.
ElemUninitialized,
/// Attempt to divide by zero.
///
/// This trap typically can happen if `div` or `rem` is executed with
/// zero as divider.
DivisionByZero,
/// Attempt to divide by zero.
///
/// This trap typically can happen if `div` or `rem` is executed with
/// zero as divider.
DivisionByZero,
/// Attempt to make a conversion to an int failed.
///
/// This can happen when:
///
/// - trying to do signed division (or get the remainder) -2<sup>N-1</sup> over -1. This is
/// because the result +2<sup>N-1</sup> isn't representable as a N-bit signed integer.
/// - trying to truncate NaNs, infinity, or value for which the result is out of range into an integer.
InvalidConversionToInt,
/// Attempt to make a conversion to an int failed.
///
/// This can happen when:
///
/// - trying to do signed division (or get the remainder) -2<sup>N-1</sup> over -1. This is
/// because the result +2<sup>N-1</sup> isn't representable as a N-bit signed integer.
/// - trying to truncate NaNs, infinity, or value for which the result is out of range into an integer.
InvalidConversionToInt,
/// Stack overflow.
///
/// This is likely caused by some infinite or very deep recursion.
/// Extensive inlining might also be the cause of stack overflow.
StackOverflow,
/// Stack overflow.
///
/// This is likely caused by some infinite or very deep recursion.
/// Extensive inlining might also be the cause of stack overflow.
StackOverflow,
/// Attempt to invoke a function with mismatching signature.
///
/// This can happen if [`FuncInstance`] was invoked
/// with mismatching [signature][`Signature`].
///
/// This can always happen with indirect calls. `call_indirect` instruction always
/// specifies the expected signature of function. If `call_indirect` is executed
/// with index that points on function with signature different that is
/// expected by this `call_indirect`, this trap is raised.
///
/// [`Signature`]: struct.Signature.html
UnexpectedSignature,
/// Attempt to invoke a function with mismatching signature.
///
/// This can happen if [`FuncInstance`] was invoked
/// with mismatching [signature][`Signature`].
///
/// This can always happen with indirect calls. `call_indirect` instruction always
/// specifies the expected signature of function. If `call_indirect` is executed
/// with index that points on function with signature different that is
/// expected by this `call_indirect`, this trap is raised.
///
/// [`Signature`]: struct.Signature.html
UnexpectedSignature,
/// Error specified by the host.
///
/// Typically returned from an implementation of [`Externals`].
///
/// [`Externals`]: trait.Externals.html
Host(Box<host::HostError>),
/// Error specified by the host.
///
/// Typically returned from an implementation of [`Externals`].
///
/// [`Externals`]: trait.Externals.html
Host(Box<host::HostError>),
}
impl TrapKind {
/// Whether this trap is specified by the host.
pub fn is_host(&self) -> bool {
match self {
&TrapKind::Host(_) => true,
_ => false,
}
}
/// Whether this trap is specified by the host.
pub fn is_host(&self) -> bool {
match self {
&TrapKind::Host(_) => true,
_ => false,
}
}
}
/// Internal interpreter error.
#[derive(Debug)]
pub enum Error {
/// Module validation error. Might occur only at load time.
Validation(String),
/// Error while instantiating a module. Might occur when provided
/// with incorrect exports (i.e. linkage failure).
Instantiation(String),
/// Function-level error.
Function(String),
/// Table-level error.
Table(String),
/// Memory-level error.
Memory(String),
/// Global-level error.
Global(String),
/// Value-level error.
Value(String),
/// Trap.
Trap(Trap),
/// Custom embedder error.
Host(Box<host::HostError>),
/// Module validation error. Might occur only at load time.
Validation(String),
/// Error while instantiating a module. Might occur when provided
/// with incorrect exports (i.e. linkage failure).
Instantiation(String),
/// Function-level error.
Function(String),
/// Table-level error.
Table(String),
/// Memory-level error.
Memory(String),
/// Global-level error.
Global(String),
/// Value-level error.
Value(String),
/// Trap.
Trap(Trap),
/// Custom embedder error.
Host(Box<host::HostError>),
}
impl Error {
/// Returns [`HostError`] if this `Error` represents some host error.
///
/// I.e. if this error have variant [`Host`] or [`Trap`][`Trap`] with [host][`TrapKind::Host`] error.
///
/// [`HostError`]: trait.HostError.html
/// [`Host`]: enum.Error.html#variant.Host
/// [`Trap`]: enum.Error.html#variant.Trap
/// [`TrapKind::Host`]: enum.TrapKind.html#variant.Host
pub fn as_host_error(&self) -> Option<&host::HostError> {
match *self {
Error::Host(ref host_err) => Some(&**host_err),
Error::Trap(ref trap) => match *trap.kind() {
TrapKind::Host(ref host_err) => Some(&**host_err),
_ => None,
}
_ => None,
}
}
/// Returns [`HostError`] if this `Error` represents some host error.
///
/// I.e. if this error have variant [`Host`] or [`Trap`][`Trap`] with [host][`TrapKind::Host`] error.
///
/// [`HostError`]: trait.HostError.html
/// [`Host`]: enum.Error.html#variant.Host
/// [`Trap`]: enum.Error.html#variant.Trap
/// [`TrapKind::Host`]: enum.TrapKind.html#variant.Host
pub fn as_host_error(&self) -> Option<&host::HostError> {
match *self {
Error::Host(ref host_err) => Some(&**host_err),
Error::Trap(ref trap) => match *trap.kind() {
TrapKind::Host(ref host_err) => Some(&**host_err),
_ => None,
},
_ => None,
}
}
}
impl Into<String> for Error {
fn into(self) -> String {
match self {
Error::Validation(s) => s,
Error::Instantiation(s) => s,
Error::Function(s) => s,
Error::Table(s) => s,
Error::Memory(s) => s,
Error::Global(s) => s,
Error::Value(s) => s,
Error::Trap(s) => format!("trap: {:?}", s),
Error::Host(e) => format!("user: {}", e),
}
}
fn into(self) -> String {
match self {
Error::Validation(s) => s,
Error::Instantiation(s) => s,
Error::Function(s) => s,
Error::Table(s) => s,
Error::Memory(s) => s,
Error::Global(s) => s,
Error::Value(s) => s,
Error::Trap(s) => format!("trap: {:?}", s),
Error::Host(e) => format!("user: {}", e),
}
}
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Validation(ref s) => write!(f, "Validation: {}", s),
Error::Instantiation(ref s) => write!(f, "Instantiation: {}", s),
Error::Function(ref s) => write!(f, "Function: {}", s),
Error::Table(ref s) => write!(f, "Table: {}", s),
Error::Memory(ref s) => write!(f, "Memory: {}", s),
Error::Global(ref s) => write!(f, "Global: {}", s),
Error::Value(ref s) => write!(f, "Value: {}", s),
Error::Trap(ref s) => write!(f, "Trap: {:?}", s),
Error::Host(ref e) => write!(f, "User: {}", e),
}
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Validation(ref s) => write!(f, "Validation: {}", s),
Error::Instantiation(ref s) => write!(f, "Instantiation: {}", s),
Error::Function(ref s) => write!(f, "Function: {}", s),
Error::Table(ref s) => write!(f, "Table: {}", s),
Error::Memory(ref s) => write!(f, "Memory: {}", s),
Error::Global(ref s) => write!(f, "Global: {}", s),
Error::Value(ref s) => write!(f, "Value: {}", s),
Error::Trap(ref s) => write!(f, "Trap: {:?}", s),
Error::Host(ref e) => write!(f, "User: {}", e),
}
}
}
#[cfg(feature = "std")]
impl error::Error for Error {
fn description(&self) -> &str {
match *self {
Error::Validation(ref s) => s,
Error::Instantiation(ref s) => s,
Error::Function(ref s) => s,
Error::Table(ref s) => s,
Error::Memory(ref s) => s,
Error::Global(ref s) => s,
Error::Value(ref s) => s,
Error::Trap(_) => "Trap",
Error::Host(_) => "Host error",
}
}
fn description(&self) -> &str {
match *self {
Error::Validation(ref s) => s,
Error::Instantiation(ref s) => s,
Error::Function(ref s) => s,
Error::Table(ref s) => s,
Error::Memory(ref s) => s,
Error::Global(ref s) => s,
Error::Value(ref s) => s,
Error::Trap(_) => "Trap",
Error::Host(_) => "Host error",
}
}
}
impl<U> From<U> for Error where U: host::HostError + Sized {
fn from(e: U) -> Self {
Error::Host(Box::new(e))
}
impl<U> From<U> for Error
where
U: host::HostError + Sized,
{
fn from(e: U) -> Self {
Error::Host(Box::new(e))
}
}
impl<U> From<U> for Trap where U: host::HostError + Sized {
fn from(e: U) -> Self {
Trap::new(TrapKind::Host(Box::new(e)))
}
impl<U> From<U> for Trap
where
U: host::HostError + Sized,
{
fn from(e: U) -> Self {
Trap::new(TrapKind::Host(Box::new(e)))
}
}
impl From<Trap> for Error {
fn from(e: Trap) -> Error {
Error::Trap(e)
}
fn from(e: Trap) -> Error {
Error::Trap(e)
}
}
impl From<TrapKind> for Trap {
fn from(e: TrapKind) -> Trap {
Trap::new(e)
}
fn from(e: TrapKind) -> Trap {
Trap::new(e)
}
}
impl From<validation::Error> for Error {
fn from(e: validation::Error) -> Error {
Error::Validation(e.to_string())
}
fn from(e: validation::Error) -> Error {
Error::Validation(e.to_string())
}
}
mod validation;
mod common;
mod memory;
mod module;
mod runner;
mod table;
mod value;
mod func;
mod global;
mod host;
mod imports;
mod global;
mod func;
mod types;
mod isa;
mod memory;
mod module;
pub mod nan_preserving_float;
mod runner;
mod table;
mod types;
mod validation;
mod value;
#[cfg(test)]
mod tests;
pub use self::memory::{MemoryInstance, MemoryRef, LINEAR_MEMORY_PAGE_SIZE};
pub use self::table::{TableInstance, TableRef};
pub use self::value::{FromRuntimeValue, RuntimeValue, LittleEndianConvert, Error as ValueError};
pub use self::host::{Externals, NopExternals, HostError, RuntimeArgs};
pub use self::imports::{ModuleImportResolver, ImportResolver, ImportsBuilder};
pub use self::module::{ModuleInstance, ModuleRef, ExternVal, NotStartedModuleRef};
pub use self::func::{FuncInstance, FuncInvocation, FuncRef, ResumableError};
pub use self::global::{GlobalInstance, GlobalRef};
pub use self::func::{FuncInstance, FuncRef, FuncInvocation, ResumableError};
pub use self::types::{Signature, ValueType, GlobalDescriptor, TableDescriptor, MemoryDescriptor};
pub use self::host::{Externals, HostError, NopExternals, RuntimeArgs};
pub use self::imports::{ImportResolver, ImportsBuilder, ModuleImportResolver};
pub use self::memory::{MemoryInstance, MemoryRef, LINEAR_MEMORY_PAGE_SIZE};
pub use self::module::{ExternVal, ModuleInstance, ModuleRef, NotStartedModuleRef};
pub use self::table::{TableInstance, TableRef};
pub use self::types::{GlobalDescriptor, MemoryDescriptor, Signature, TableDescriptor, ValueType};
pub use self::value::{Error as ValueError, FromRuntimeValue, LittleEndianConvert, RuntimeValue};
/// WebAssembly-specific sizes and units.
pub mod memory_units {
pub use memory_units_crate::wasm32::*;
pub use memory_units_crate::{Bytes, ByteSize, RoundUpTo, size_of};
pub use memory_units_crate::wasm32::*;
pub use memory_units_crate::{size_of, ByteSize, Bytes, RoundUpTo};
}
/// Deserialized module prepared for instantiation.
pub struct Module {
code_map: Vec<isa::Instructions>,
module: parity_wasm::elements::Module,
code_map: Vec<isa::Instructions>,
module: parity_wasm::elements::Module,
}
impl Module {
/// Create `Module` from `parity_wasm::elements::Module`.
///
/// This function will load, validate and prepare a `parity_wasm`'s `Module`.
///
/// # Errors
///
/// Returns `Err` if provided `Module` is not valid.
///
/// # Examples
///
/// ```rust
/// extern crate parity_wasm;
/// extern crate wasmi;
///
/// use parity_wasm::builder;
/// use parity_wasm::elements;
///
/// fn main() {
/// let parity_module =
/// builder::module()
/// .function()
/// .signature().with_param(elements::ValueType::I32).build()
/// .body().build()
/// .build()
/// .build();
///
/// let module = wasmi::Module::from_parity_wasm_module(parity_module)
/// .expect("parity-wasm builder generated invalid module!");
///
/// // Instantiate `module`, etc...
/// }
/// ```
pub fn from_parity_wasm_module(module: parity_wasm::elements::Module) -> Result<Module, Error> {
use validation::{validate_module, ValidatedModule};
let ValidatedModule {
code_map,
module,
} = validate_module(module)?;
/// Create `Module` from `parity_wasm::elements::Module`.
///
/// This function will load, validate and prepare a `parity_wasm`'s `Module`.
///
/// # Errors
///
/// Returns `Err` if provided `Module` is not valid.
///
/// # Examples
///
/// ```rust
/// extern crate parity_wasm;
/// extern crate wasmi;
///
/// use parity_wasm::builder;
/// use parity_wasm::elements;
///
/// fn main() {
/// let parity_module =
/// builder::module()
/// .function()
/// .signature().with_param(elements::ValueType::I32).build()
/// .body().build()
/// .build()
/// .build();
///
/// let module = wasmi::Module::from_parity_wasm_module(parity_module)
/// .expect("parity-wasm builder generated invalid module!");
///
/// // Instantiate `module`, etc...
/// }
/// ```
pub fn from_parity_wasm_module(module: parity_wasm::elements::Module) -> Result<Module, Error> {
use validation::{validate_module, ValidatedModule};
let ValidatedModule { code_map, module } = validate_module(module)?;
Ok(Module {
code_map,
module,
})
}
Ok(Module { code_map, module })
}
/// Fail if the module contains any floating-point operations
///
/// # Errors
///
/// Returns `Err` if provided `Module` is not valid.
///
/// # Examples
///
/// ```rust
/// # extern crate wasmi;
/// # extern crate wabt;
///
/// let wasm_binary: Vec<u8> =
/// wabt::wat2wasm(
/// r#"
/// (module
/// (func $add (param $lhs i32) (param $rhs i32) (result i32)
/// get_local $lhs
/// get_local $rhs
/// i32.add))
/// "#,
/// )
/// .expect("failed to parse wat");
///
/// // Load wasm binary and prepare it for instantiation.
/// let module = wasmi::Module::from_buffer(&wasm_binary).expect("Parsing failed");
/// assert!(module.deny_floating_point().is_ok());
///
/// let wasm_binary: Vec<u8> =
/// wabt::wat2wasm(
/// r#"
/// (module
/// (func $add (param $lhs f32) (param $rhs f32) (result f32)
/// get_local $lhs
/// get_local $rhs
/// f32.add))
/// "#,
/// )
/// .expect("failed to parse wat");
///
/// let module = wasmi::Module::from_buffer(&wasm_binary).expect("Parsing failed");
/// assert!(module.deny_floating_point().is_err());
///
/// let wasm_binary: Vec<u8> =
/// wabt::wat2wasm(
/// r#"
/// (module
/// (func $add (param $lhs f32) (param $rhs f32) (result f32)
/// get_local $lhs))
/// "#,
/// )
/// .expect("failed to parse wat");
///
/// let module = wasmi::Module::from_buffer(&wasm_binary).expect("Parsing failed");
/// assert!(module.deny_floating_point().is_err());
/// ```
pub fn deny_floating_point(&self) -> Result<(), Error> {
validation::deny_floating_point(&self.module).map_err(Into::into)
}
/// Fail if the module contains any floating-point operations
///
/// # Errors
///
/// Returns `Err` if provided `Module` is not valid.
///
/// # Examples
///
/// ```rust
/// # extern crate wasmi;
/// # extern crate wabt;
///
/// let wasm_binary: Vec<u8> =
/// wabt::wat2wasm(
/// r#"
/// (module
/// (func $add (param $lhs i32) (param $rhs i32) (result i32)
/// get_local $lhs
/// get_local $rhs
/// i32.add))
/// "#,
/// )
/// .expect("failed to parse wat");
///
/// // Load wasm binary and prepare it for instantiation.
/// let module = wasmi::Module::from_buffer(&wasm_binary).expect("Parsing failed");
/// assert!(module.deny_floating_point().is_ok());
///
/// let wasm_binary: Vec<u8> =
/// wabt::wat2wasm(
/// r#"
/// (module
/// (func $add (param $lhs f32) (param $rhs f32) (result f32)
/// get_local $lhs
/// get_local $rhs
/// f32.add))
/// "#,
/// )
/// .expect("failed to parse wat");
///
/// let module = wasmi::Module::from_buffer(&wasm_binary).expect("Parsing failed");
/// assert!(module.deny_floating_point().is_err());
///
/// let wasm_binary: Vec<u8> =
/// wabt::wat2wasm(
/// r#"
/// (module
/// (func $add (param $lhs f32) (param $rhs f32) (result f32)
/// get_local $lhs))
/// "#,
/// )
/// .expect("failed to parse wat");
///
/// let module = wasmi::Module::from_buffer(&wasm_binary).expect("Parsing failed");
/// assert!(module.deny_floating_point().is_err());
/// ```
pub fn deny_floating_point(&self) -> Result<(), Error> {
validation::deny_floating_point(&self.module).map_err(Into::into)
}
/// Create `Module` from a given buffer.
///
/// This function will deserialize wasm module from a given module,
/// validate and prepare it for instantiation.
///
/// # Errors
///
/// Returns `Err` if wasm binary in provided `buffer` is not valid wasm binary.
///
/// # Examples
///
/// ```rust
/// extern crate wasmi;
///
/// fn main() {
/// let module =
/// wasmi::Module::from_buffer(
/// // Minimal module:
/// // \0asm - magic
/// // 0x01 - version (in little-endian)
/// &[0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00]
/// ).expect("Failed to load minimal module");
///
/// // Instantiate `module`, etc...
/// }
/// ```
pub fn from_buffer<B: AsRef<[u8]>>(buffer: B) -> Result<Module, Error> {
let module = parity_wasm::elements::deserialize_buffer(buffer.as_ref())
.map_err(|e: parity_wasm::elements::Error| Error::Validation(e.to_string()))?;
Module::from_parity_wasm_module(module)
}
/// Create `Module` from a given buffer.
///
/// This function will deserialize wasm module from a given module,
/// validate and prepare it for instantiation.
///
/// # Errors
///
/// Returns `Err` if wasm binary in provided `buffer` is not valid wasm binary.
///
/// # Examples
///
/// ```rust
/// extern crate wasmi;
///
/// fn main() {
/// let module =
/// wasmi::Module::from_buffer(
/// // Minimal module:
/// // \0asm - magic
/// // 0x01 - version (in little-endian)
/// &[0x00, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00]
/// ).expect("Failed to load minimal module");
///
/// // Instantiate `module`, etc...
/// }
/// ```
pub fn from_buffer<B: AsRef<[u8]>>(buffer: B) -> Result<Module, Error> {
let module = parity_wasm::elements::deserialize_buffer(buffer.as_ref())
.map_err(|e: parity_wasm::elements::Error| Error::Validation(e.to_string()))?;
Module::from_parity_wasm_module(module)
}
pub(crate) fn module(&self) -> &parity_wasm::elements::Module {
&self.module
}
pub(crate) fn module(&self) -> &parity_wasm::elements::Module {
&self.module
}
pub(crate) fn code(&self) -> &Vec<isa::Instructions> {
&self.code_map
}
pub(crate) fn code(&self) -> &Vec<isa::Instructions> {
&self.code_map
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -3,8 +3,8 @@
#[cfg(not(feature = "std"))]
use libm::{F32Ext, F64Ext};
use core::ops::{Add, Div, Mul, Neg, Sub, Rem};
use core::cmp::{Ordering, PartialEq, PartialOrd};
use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
macro_rules! impl_binop {
($for:ident, $is:ident, $op:ident, $func_name:ident) => {
@ -13,19 +13,22 @@ macro_rules! impl_binop {
fn $func_name(self, other: T) -> Self {
$for(
$op::$func_name(
$is::from_bits(self.0),
$is::from_bits(other.into().0)
).to_bits()
$op::$func_name($is::from_bits(self.0), $is::from_bits(other.into().0))
.to_bits(),
)
}
}
}
};
}
macro_rules! float {
($for:ident, $rep:ident, $is:ident) => {
float!($for, $rep, $is, 1 << (::core::mem::size_of::<$is>() * 8 - 1));
float!(
$for,
$rep,
$is,
1 << (::core::mem::size_of::<$is>() * 8 - 1)
);
};
($for:ident, $rep:ident, $is:ident, $sign_bit:expr) => {
#[derive(Copy, Clone)]
@ -112,7 +115,7 @@ macro_rules! float {
$is::from(*self).fmt(f)
}
}
}
};
}
float!(F32, u32, f32);
@ -150,9 +153,9 @@ mod tests {
use super::{F32, F64};
use core::ops::{Add, Div, Mul, Neg, Sub};
use core::fmt::Debug;
use core::iter;
use core::ops::{Add, Div, Mul, Neg, Sub};
fn test_ops<T, F, I>(iter: I)
where

File diff suppressed because it is too large Load Diff

View File

@ -1,13 +1,13 @@
#[allow(unused_imports)]
use alloc::prelude::*;
use alloc::rc::Rc;
use core::u32;
use core::fmt;
use core::cell::RefCell;
use parity_wasm::elements::ResizableLimits;
use Error;
use core::fmt;
use core::u32;
use func::FuncRef;
use module::check_limits;
use parity_wasm::elements::ResizableLimits;
use Error;
/// Reference to a table (See [`TableInstance`] for details).
///
@ -19,10 +19,10 @@ use module::check_limits;
pub struct TableRef(Rc<TableInstance>);
impl ::core::ops::Deref for TableRef {
type Target = TableInstance;
fn deref(&self) -> &TableInstance {
&self.0
}
type Target = TableInstance;
fn deref(&self) -> &TableInstance {
&self.0
}
}
/// Runtime representation of a table.
@ -39,118 +39,118 @@ impl ::core::ops::Deref for TableRef {
/// [`grow`]: #method.grow
///
pub struct TableInstance {
/// Table limits.
limits: ResizableLimits,
/// Table memory buffer.
buffer: RefCell<Vec<Option<FuncRef>>>,
/// Table limits.
limits: ResizableLimits,
/// Table memory buffer.
buffer: RefCell<Vec<Option<FuncRef>>>,
}
impl fmt::Debug for TableInstance {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("TableInstance")
.field("limits", &self.limits)
.field("buffer.len", &self.buffer.borrow().len())
.finish()
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("TableInstance")
.field("limits", &self.limits)
.field("buffer.len", &self.buffer.borrow().len())
.finish()
}
}
impl TableInstance {
/// Allocate a table instance.
///
/// The table allocated with initial size, specified by `initial_size`.
/// Maximum size can be specified by `maximum_size`.
///
/// All table elements are allocated uninitialized.
///
/// # Errors
///
/// Returns `Err` if `initial_size` is greater than `maximum_size`.
pub fn alloc(initial_size: u32, maximum_size: Option<u32>) -> Result<TableRef, Error> {
let table = TableInstance::new(ResizableLimits::new(initial_size, maximum_size))?;
Ok(TableRef(Rc::new(table)))
}
/// Allocate a table instance.
///
/// The table allocated with initial size, specified by `initial_size`.
/// Maximum size can be specified by `maximum_size`.
///
/// All table elements are allocated uninitialized.
///
/// # Errors
///
/// Returns `Err` if `initial_size` is greater than `maximum_size`.
pub fn alloc(initial_size: u32, maximum_size: Option<u32>) -> Result<TableRef, Error> {
let table = TableInstance::new(ResizableLimits::new(initial_size, maximum_size))?;
Ok(TableRef(Rc::new(table)))
}
fn new(limits: ResizableLimits) -> Result<TableInstance, Error> {
check_limits(&limits)?;
Ok(TableInstance {
buffer: RefCell::new(vec![None; limits.initial() as usize]),
limits: limits,
})
}
fn new(limits: ResizableLimits) -> Result<TableInstance, Error> {
check_limits(&limits)?;
Ok(TableInstance {
buffer: RefCell::new(vec![None; limits.initial() as usize]),
limits: limits,
})
}
/// Return table limits.
pub(crate) fn limits(&self) -> &ResizableLimits {
&self.limits
}
/// Return table limits.
pub(crate) fn limits(&self) -> &ResizableLimits {
&self.limits
}
/// Returns size this table was created with.
pub fn initial_size(&self) -> u32 {
self.limits.initial()
}
/// Returns size this table was created with.
pub fn initial_size(&self) -> u32 {
self.limits.initial()
}
/// Returns maximum size `TableInstance` can grow to.
pub fn maximum_size(&self) -> Option<u32> {
self.limits.maximum()
}
/// Returns maximum size `TableInstance` can grow to.
pub fn maximum_size(&self) -> Option<u32> {
self.limits.maximum()
}
/// Returns current size of the table.
pub fn current_size(&self) -> u32 {
self.buffer.borrow().len() as u32
}
/// Returns current size of the table.
pub fn current_size(&self) -> u32 {
self.buffer.borrow().len() as u32
}
/// Increases the size of the table by given number of elements.
///
/// # Errors
///
/// Returns `Err` if tried to allocate more elements than permited by limit.
pub fn grow(&self, by: u32) -> Result<(), Error> {
let mut buffer = self.buffer.borrow_mut();
let maximum_size = self.maximum_size().unwrap_or(u32::MAX);
let new_size = self.current_size().checked_add(by)
.and_then(|new_size| {
if maximum_size < new_size {
None
} else {
Some(new_size)
}
})
.ok_or_else(||
Error::Table(format!(
"Trying to grow table by {} items when there are already {} items",
by,
self.current_size(),
))
)?;
buffer.resize(new_size as usize, None);
Ok(())
}
/// Increases the size of the table by given number of elements.
///
/// # Errors
///
/// Returns `Err` if tried to allocate more elements than permited by limit.
pub fn grow(&self, by: u32) -> Result<(), Error> {
let mut buffer = self.buffer.borrow_mut();
let maximum_size = self.maximum_size().unwrap_or(u32::MAX);
let new_size = self
.current_size()
.checked_add(by)
.and_then(|new_size| {
if maximum_size < new_size {
None
} else {
Some(new_size)
}
})
.ok_or_else(|| {
Error::Table(format!(
"Trying to grow table by {} items when there are already {} items",
by,
self.current_size(),
))
})?;
buffer.resize(new_size as usize, None);
Ok(())
}
/// Get the specific value in the table
pub fn get(&self, offset: u32) -> Result<Option<FuncRef>, Error> {
let buffer = self.buffer.borrow();
let buffer_len = buffer.len();
let table_elem = buffer.get(offset as usize).cloned().ok_or_else(||
Error::Table(format!(
"trying to read table item with index {} when there are only {} items",
offset,
buffer_len
)),
)?;
Ok(table_elem)
}
/// Get the specific value in the table
pub fn get(&self, offset: u32) -> Result<Option<FuncRef>, Error> {
let buffer = self.buffer.borrow();
let buffer_len = buffer.len();
let table_elem = buffer.get(offset as usize).cloned().ok_or_else(|| {
Error::Table(format!(
"trying to read table item with index {} when there are only {} items",
offset, buffer_len
))
})?;
Ok(table_elem)
}
/// Set the table element to the specified function.
pub fn set(&self, offset: u32, value: Option<FuncRef>) -> Result<(), Error> {
let mut buffer = self.buffer.borrow_mut();
let buffer_len = buffer.len();
let table_elem = buffer.get_mut(offset as usize).ok_or_else(||
Error::Table(format!(
"trying to update table item with index {} when there are only {} items",
offset,
buffer_len
))
)?;
*table_elem = value;
Ok(())
}
/// Set the table element to the specified function.
pub fn set(&self, offset: u32, value: Option<FuncRef>) -> Result<(), Error> {
let mut buffer = self.buffer.borrow_mut();
let buffer_len = buffer.len();
let table_elem = buffer.get_mut(offset as usize).ok_or_else(|| {
Error::Table(format!(
"trying to update table item with index {} when there are only {} items",
offset, buffer_len
))
})?;
*table_elem = value;
Ok(())
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
use wabt;
use {Module};
use Module;
mod host;
mod wasm;
@ -12,25 +12,31 @@ fn assert_std_err_impl<T: ::std::error::Error>() {}
#[test]
fn assert_error_properties() {
assert_send::<Error>();
assert_sync::<Error>();
assert_std_err_impl::<Error>();
assert_send::<Error>();
assert_sync::<Error>();
assert_std_err_impl::<Error>();
}
/// Test that converting an u32 (u64) that does not fit in an i32 (i64)
/// to a RuntimeValue and back works as expected and the number remains unchanged.
#[test]
fn unsigned_to_runtime_value() {
use super::RuntimeValue;
use super::RuntimeValue;
let overflow_i32: u32 = ::core::i32::MAX as u32 + 1;
assert_eq!(RuntimeValue::from(overflow_i32).try_into::<u32>().unwrap(), overflow_i32);
let overflow_i32: u32 = ::core::i32::MAX as u32 + 1;
assert_eq!(
RuntimeValue::from(overflow_i32).try_into::<u32>().unwrap(),
overflow_i32
);
let overflow_i64: u64 = ::core::i64::MAX as u64 + 1;
assert_eq!(RuntimeValue::from(overflow_i64).try_into::<u64>().unwrap(), overflow_i64);
let overflow_i64: u64 = ::core::i64::MAX as u64 + 1;
assert_eq!(
RuntimeValue::from(overflow_i64).try_into::<u64>().unwrap(),
overflow_i64
);
}
pub fn parse_wat(source: &str) -> Module {
let wasm_binary = wabt::wat2wasm(source).expect("Failed to parse wat source");
Module::from_buffer(wasm_binary).expect("Failed to load parsed module")
let wasm_binary = wabt::wat2wasm(source).expect("Failed to parse wat source");
Module::from_buffer(wasm_binary).expect("Failed to load parsed module")
}

View File

@ -1,110 +1,113 @@
use {
Error, Signature, FuncRef, GlobalInstance, GlobalRef, ImportsBuilder, MemoryInstance,
MemoryRef, ModuleImportResolver, ModuleInstance, NopExternals, RuntimeValue,
TableInstance, TableRef, Module, GlobalDescriptor, TableDescriptor, MemoryDescriptor,
};
use memory_units::Pages;
use std::fs::File;
use {
Error, FuncRef, GlobalDescriptor, GlobalInstance, GlobalRef, ImportsBuilder, MemoryDescriptor,
MemoryInstance, MemoryRef, Module, ModuleImportResolver, ModuleInstance, NopExternals,
RuntimeValue, Signature, TableDescriptor, TableInstance, TableRef,
};
struct Env {
table_base: GlobalRef,
memory_base: GlobalRef,
memory: MemoryRef,
table: TableRef,
table_base: GlobalRef,
memory_base: GlobalRef,
memory: MemoryRef,
table: TableRef,
}
impl Env {
fn new() -> Env {
Env {
table_base: GlobalInstance::alloc(RuntimeValue::I32(0), false),
memory_base: GlobalInstance::alloc(RuntimeValue::I32(0), false),
memory: MemoryInstance::alloc(Pages(256), None).unwrap(),
table: TableInstance::alloc(64, None).unwrap(),
}
}
fn new() -> Env {
Env {
table_base: GlobalInstance::alloc(RuntimeValue::I32(0), false),
memory_base: GlobalInstance::alloc(RuntimeValue::I32(0), false),
memory: MemoryInstance::alloc(Pages(256), None).unwrap(),
table: TableInstance::alloc(64, None).unwrap(),
}
}
}
impl ModuleImportResolver for Env {
fn resolve_func(&self, _field_name: &str, _func_type: &Signature) -> Result<FuncRef, Error> {
Err(Error::Instantiation(
"env module doesn't provide any functions".into(),
))
}
fn resolve_func(&self, _field_name: &str, _func_type: &Signature) -> Result<FuncRef, Error> {
Err(Error::Instantiation(
"env module doesn't provide any functions".into(),
))
}
fn resolve_global(
&self,
field_name: &str,
_global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
match field_name {
"tableBase" => Ok(self.table_base.clone()),
"memoryBase" => Ok(self.memory_base.clone()),
_ => Err(Error::Instantiation(format!(
"env module doesn't provide global '{}'",
field_name
))),
}
}
fn resolve_global(
&self,
field_name: &str,
_global_type: &GlobalDescriptor,
) -> Result<GlobalRef, Error> {
match field_name {
"tableBase" => Ok(self.table_base.clone()),
"memoryBase" => Ok(self.memory_base.clone()),
_ => Err(Error::Instantiation(format!(
"env module doesn't provide global '{}'",
field_name
))),
}
}
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
match field_name {
"memory" => Ok(self.memory.clone()),
_ => Err(Error::Instantiation(format!(
"env module doesn't provide memory '{}'",
field_name
))),
}
}
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, Error> {
match field_name {
"memory" => Ok(self.memory.clone()),
_ => Err(Error::Instantiation(format!(
"env module doesn't provide memory '{}'",
field_name
))),
}
}
fn resolve_table(&self, field_name: &str, _table_type: &TableDescriptor) -> Result<TableRef, Error> {
match field_name {
"table" => Ok(self.table.clone()),
_ => Err(Error::Instantiation(
format!("env module doesn't provide table '{}'", field_name),
)),
}
}
fn resolve_table(
&self,
field_name: &str,
_table_type: &TableDescriptor,
) -> Result<TableRef, Error> {
match field_name {
"table" => Ok(self.table.clone()),
_ => Err(Error::Instantiation(format!(
"env module doesn't provide table '{}'",
field_name
))),
}
}
}
fn load_from_file(filename: &str) -> Module {
use std::io::prelude::*;
let mut file = File::open(filename).unwrap();
let mut buf = Vec::new();
file.read_to_end(&mut buf).unwrap();
let wasm_buf = ::wabt::wat2wasm(&buf).unwrap();
Module::from_buffer(wasm_buf).unwrap()
use std::io::prelude::*;
let mut file = File::open(filename).unwrap();
let mut buf = Vec::new();
file.read_to_end(&mut buf).unwrap();
let wasm_buf = ::wabt::wat2wasm(&buf).unwrap();
Module::from_buffer(wasm_buf).unwrap()
}
#[test]
fn interpreter_inc_i32() {
// Name of function contained in WASM file (note the leading underline)
const FUNCTION_NAME: &'static str = "_inc_i32";
// The WASM file containing the module and function
const WASM_FILE: &str = &"res/fixtures/inc_i32.wast";
// Name of function contained in WASM file (note the leading underline)
const FUNCTION_NAME: &'static str = "_inc_i32";
// The WASM file containing the module and function
const WASM_FILE: &str = &"res/fixtures/inc_i32.wast";
let module = load_from_file(WASM_FILE);
let module = load_from_file(WASM_FILE);
let env = Env::new();
let env = Env::new();
let instance = ModuleInstance::new(
&module,
&ImportsBuilder::new().with_resolver("env", &env),
).expect("Failed to instantiate module")
.assert_no_start();
let instance = ModuleInstance::new(&module, &ImportsBuilder::new().with_resolver("env", &env))
.expect("Failed to instantiate module")
.assert_no_start();
let i32_val = 42;
// the functions expects a single i32 parameter
let args = &[RuntimeValue::I32(i32_val)];
let exp_retval = Some(RuntimeValue::I32(i32_val + 1));
let i32_val = 42;
// the functions expects a single i32 parameter
let args = &[RuntimeValue::I32(i32_val)];
let exp_retval = Some(RuntimeValue::I32(i32_val + 1));
let retval = instance
.invoke_export(FUNCTION_NAME, args, &mut NopExternals)
.expect("");
assert_eq!(exp_retval, retval);
let retval = instance
.invoke_export(FUNCTION_NAME, args, &mut NopExternals)
.expect("");
assert_eq!(exp_retval, retval);
}
#[test]
@ -114,18 +117,15 @@ fn interpreter_accumulate_u8() {
// The WASM file containing the module and function
const WASM_FILE: &str = &"res/fixtures/accumulate_u8.wast";
// The octet sequence being accumulated
const BUF: &[u8] = &[9,8,7,6,5,4,3,2,1];
const BUF: &[u8] = &[9, 8, 7, 6, 5, 4, 3, 2, 1];
// Load the module-structure from wasm-file and add to program
let module = load_from_file(WASM_FILE);
let module = load_from_file(WASM_FILE);
let env = Env::new();
let instance = ModuleInstance::new(
&module,
&ImportsBuilder::new().with_resolver("env", &env),
).expect("Failed to instantiate module")
.assert_no_start();
let env = Env::new();
let instance = ModuleInstance::new(&module, &ImportsBuilder::new().with_resolver("env", &env))
.expect("Failed to instantiate module")
.assert_no_start();
let env_memory = env.memory.clone();
@ -134,7 +134,10 @@ fn interpreter_accumulate_u8() {
let _ = env_memory.set(offset, BUF);
// Set up the function argument list and invoke the function
let args = &[RuntimeValue::I32(BUF.len() as i32), RuntimeValue::I32(offset as i32)];
let args = &[
RuntimeValue::I32(BUF.len() as i32),
RuntimeValue::I32(offset as i32),
];
let retval = instance
.invoke_export(FUNCTION_NAME, args, &mut NopExternals)
.expect("Failed to execute function");

View File

@ -1,7 +1,8 @@
use alloc::borrow::Cow;
use parity_wasm::elements::{
FunctionType, ValueType as EValueType, GlobalType, TableType, MemoryType};
FunctionType, GlobalType, MemoryType, TableType, ValueType as EValueType,
};
/// Signature of a [function].
///
@ -13,55 +14,60 @@ use parity_wasm::elements::{
/// [function]: struct.FuncInstance.html
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Signature {
params: Cow<'static, [ValueType]>,
return_type: Option<ValueType>,
params: Cow<'static, [ValueType]>,
return_type: Option<ValueType>,
}
impl Signature {
/// Creates new signature with givens
/// parameter types and optional return type.
///
/// # Examples
///
/// ```rust
/// use wasmi::{Signature, ValueType};
///
/// // s1: (i32) -> ()
/// let s1 = Signature::new(&[ValueType::I32][..], None);
///
/// // s2: () -> i32
/// let s2 = Signature::new(&[][..], Some(ValueType::I32));
///
/// // s3: (I64) -> ()
/// let dynamic_params = vec![ValueType::I64];
/// let s3 = Signature::new(dynamic_params, None);
/// ```
pub fn new<C: Into<Cow<'static, [ValueType]>>>(
params: C,
return_type: Option<ValueType>
) -> Signature {
Signature {
params: params.into(),
return_type: return_type,
}
}
/// Creates new signature with givens
/// parameter types and optional return type.
///
/// # Examples
///
/// ```rust
/// use wasmi::{Signature, ValueType};
///
/// // s1: (i32) -> ()
/// let s1 = Signature::new(&[ValueType::I32][..], None);
///
/// // s2: () -> i32
/// let s2 = Signature::new(&[][..], Some(ValueType::I32));
///
/// // s3: (I64) -> ()
/// let dynamic_params = vec![ValueType::I64];
/// let s3 = Signature::new(dynamic_params, None);
/// ```
pub fn new<C: Into<Cow<'static, [ValueType]>>>(
params: C,
return_type: Option<ValueType>,
) -> Signature {
Signature {
params: params.into(),
return_type: return_type,
}
}
/// Returns parameter types of this signature.
pub fn params(&self) -> &[ValueType] {
&self.params.as_ref()
}
/// Returns parameter types of this signature.
pub fn params(&self) -> &[ValueType] {
&self.params.as_ref()
}
/// Returns return type of this signature.
pub fn return_type(&self) -> Option<ValueType> {
self.return_type
}
/// Returns return type of this signature.
pub fn return_type(&self) -> Option<ValueType> {
self.return_type
}
pub(crate) fn from_elements(func_type: &FunctionType) -> Signature {
Signature {
params: func_type.params().iter().cloned().map(ValueType::from_elements).collect(),
return_type: func_type.return_type().map(ValueType::from_elements),
}
}
pub(crate) fn from_elements(func_type: &FunctionType) -> Signature {
Signature {
params: func_type
.params()
.iter()
.cloned()
.map(ValueType::from_elements)
.collect(),
return_type: func_type.return_type().map(ValueType::from_elements),
}
}
}
/// Type of a value.
@ -71,34 +77,34 @@ impl Signature {
/// [`RuntimeValue`]: enum.RuntimeValue.html
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum ValueType {
/// 32-bit signed or unsigned integer.
I32,
/// 64-bit signed or unsigned integer.
I64,
/// 32-bit IEEE 754-2008 floating point number.
F32,
/// 64-bit IEEE 754-2008 floating point number.
F64,
/// 32-bit signed or unsigned integer.
I32,
/// 64-bit signed or unsigned integer.
I64,
/// 32-bit IEEE 754-2008 floating point number.
F32,
/// 64-bit IEEE 754-2008 floating point number.
F64,
}
impl ValueType {
pub(crate) fn from_elements(value_type: EValueType) -> ValueType {
match value_type {
EValueType::I32 => ValueType::I32,
EValueType::I64 => ValueType::I64,
EValueType::F32 => ValueType::F32,
EValueType::F64 => ValueType::F64,
}
}
pub(crate) fn from_elements(value_type: EValueType) -> ValueType {
match value_type {
EValueType::I32 => ValueType::I32,
EValueType::I64 => ValueType::I64,
EValueType::F32 => ValueType::F32,
EValueType::F64 => ValueType::F64,
}
}
pub(crate) fn into_elements(self) -> EValueType {
match self {
ValueType::I32 => EValueType::I32,
ValueType::I64 => EValueType::I64,
ValueType::F32 => EValueType::F32,
ValueType::F64 => EValueType::F64,
}
}
pub(crate) fn into_elements(self) -> EValueType {
match self {
ValueType::I32 => EValueType::I32,
ValueType::I64 => EValueType::I64,
ValueType::F32 => EValueType::F32,
ValueType::F64 => EValueType::F64,
}
}
}
/// Description of a global variable.
@ -108,29 +114,29 @@ impl ValueType {
///
/// [`ImportResolver`]: trait.ImportResolver.html
pub struct GlobalDescriptor {
value_type: ValueType,
mutable: bool,
value_type: ValueType,
mutable: bool,
}
impl GlobalDescriptor {
pub(crate) fn from_elements(global_type: &GlobalType) -> GlobalDescriptor {
GlobalDescriptor {
value_type: ValueType::from_elements(global_type.content_type()),
mutable: global_type.is_mutable(),
}
}
pub(crate) fn from_elements(global_type: &GlobalType) -> GlobalDescriptor {
GlobalDescriptor {
value_type: ValueType::from_elements(global_type.content_type()),
mutable: global_type.is_mutable(),
}
}
/// Returns [`ValueType`] of the requested global.
///
/// [`ValueType`]: enum.ValueType.html
pub fn value_type(&self) -> ValueType {
self.value_type
}
/// Returns [`ValueType`] of the requested global.
///
/// [`ValueType`]: enum.ValueType.html
pub fn value_type(&self) -> ValueType {
self.value_type
}
/// Returns whether the requested global mutable.
pub fn is_mutable(&self) -> bool {
self.mutable
}
/// Returns whether the requested global mutable.
pub fn is_mutable(&self) -> bool {
self.mutable
}
}
/// Description of a table.
@ -140,27 +146,27 @@ impl GlobalDescriptor {
///
/// [`ImportResolver`]: trait.ImportResolver.html
pub struct TableDescriptor {
initial: u32,
maximum: Option<u32>,
initial: u32,
maximum: Option<u32>,
}
impl TableDescriptor {
pub(crate) fn from_elements(table_type: &TableType) -> TableDescriptor {
TableDescriptor {
initial: table_type.limits().initial(),
maximum: table_type.limits().maximum(),
}
}
pub(crate) fn from_elements(table_type: &TableType) -> TableDescriptor {
TableDescriptor {
initial: table_type.limits().initial(),
maximum: table_type.limits().maximum(),
}
}
/// Returns initial size of the requested table.
pub fn initial(&self) -> u32 {
self.initial
}
/// Returns initial size of the requested table.
pub fn initial(&self) -> u32 {
self.initial
}
/// Returns maximum size of the requested table.
pub fn maximum(&self) -> Option<u32> {
self.maximum
}
/// Returns maximum size of the requested table.
pub fn maximum(&self) -> Option<u32> {
self.maximum
}
}
/// Description of a linear memory.
@ -170,25 +176,25 @@ impl TableDescriptor {
///
/// [`ImportResolver`]: trait.ImportResolver.html
pub struct MemoryDescriptor {
initial: u32,
maximum: Option<u32>,
initial: u32,
maximum: Option<u32>,
}
impl MemoryDescriptor {
pub(crate) fn from_elements(memory_type: &MemoryType) -> MemoryDescriptor {
MemoryDescriptor {
initial: memory_type.limits().initial(),
maximum: memory_type.limits().maximum(),
}
}
pub(crate) fn from_elements(memory_type: &MemoryType) -> MemoryDescriptor {
MemoryDescriptor {
initial: memory_type.limits().initial(),
maximum: memory_type.limits().maximum(),
}
}
/// Returns initial size (in pages) of the requested memory.
pub fn initial(&self) -> u32 {
self.initial
}
/// Returns initial size (in pages) of the requested memory.
pub fn initial(&self) -> u32 {
self.initial
}
/// Returns maximum size (in pages) of the requested memory.
pub fn maximum(&self) -> Option<u32> {
self.maximum
}
/// Returns maximum size (in pages) of the requested memory.
pub fn maximum(&self) -> Option<u32> {
self.maximum
}
}

View File

@ -1,136 +1,142 @@
#[allow(unused_imports)]
use alloc::prelude::*;
use parity_wasm::elements::{MemoryType, TableType, GlobalType, BlockType, ValueType, FunctionType};
use parity_wasm::elements::{
BlockType, FunctionType, GlobalType, MemoryType, TableType, ValueType,
};
use validation::Error;
#[derive(Default, Debug)]
pub struct ModuleContext {
pub memories: Vec<MemoryType>,
pub tables: Vec<TableType>,
pub globals: Vec<GlobalType>,
pub types: Vec<FunctionType>,
pub func_type_indexes: Vec<u32>,
pub memories: Vec<MemoryType>,
pub tables: Vec<TableType>,
pub globals: Vec<GlobalType>,
pub types: Vec<FunctionType>,
pub func_type_indexes: Vec<u32>,
}
impl ModuleContext {
pub fn memories(&self) -> &[MemoryType] {
&self.memories
}
pub fn memories(&self) -> &[MemoryType] {
&self.memories
}
pub fn tables(&self) -> &[TableType] {
&self.tables
}
pub fn tables(&self) -> &[TableType] {
&self.tables
}
pub fn globals(&self) -> &[GlobalType] {
&self.globals
}
pub fn globals(&self) -> &[GlobalType] {
&self.globals
}
pub fn types(&self) -> &[FunctionType] {
&self.types
}
pub fn types(&self) -> &[FunctionType] {
&self.types
}
pub fn func_type_indexes(&self) -> &[u32] {
&self.func_type_indexes
}
pub fn func_type_indexes(&self) -> &[u32] {
&self.func_type_indexes
}
pub fn require_memory(&self, idx: u32) -> Result<(), Error> {
if self.memories().get(idx as usize).is_none() {
return Err(Error(format!("Memory at index {} doesn't exists", idx)));
}
Ok(())
}
pub fn require_memory(&self, idx: u32) -> Result<(), Error> {
if self.memories().get(idx as usize).is_none() {
return Err(Error(format!("Memory at index {} doesn't exists", idx)));
}
Ok(())
}
pub fn require_table(&self, idx: u32) -> Result<&TableType, Error> {
self.tables()
.get(idx as usize)
.ok_or_else(|| Error(format!("Table at index {} doesn't exists", idx)))
}
pub fn require_table(&self, idx: u32) -> Result<&TableType, Error> {
self.tables()
.get(idx as usize)
.ok_or_else(|| Error(format!("Table at index {} doesn't exists", idx)))
}
pub fn require_function(&self, idx: u32) -> Result<(&[ValueType], BlockType), Error> {
let ty_idx = self.func_type_indexes()
.get(idx as usize)
.ok_or_else(|| Error(format!("Function at index {} doesn't exists", idx)))?;
self.require_function_type(*ty_idx)
}
pub fn require_function(&self, idx: u32) -> Result<(&[ValueType], BlockType), Error> {
let ty_idx = self
.func_type_indexes()
.get(idx as usize)
.ok_or_else(|| Error(format!("Function at index {} doesn't exists", idx)))?;
self.require_function_type(*ty_idx)
}
pub fn require_function_type(&self, idx: u32) -> Result<(&[ValueType], BlockType), Error> {
let ty = self.types()
.get(idx as usize)
.ok_or_else(|| Error(format!("Type at index {} doesn't exists", idx)))?;
pub fn require_function_type(&self, idx: u32) -> Result<(&[ValueType], BlockType), Error> {
let ty = self
.types()
.get(idx as usize)
.ok_or_else(|| Error(format!("Type at index {} doesn't exists", idx)))?;
let params = ty.params();
let return_ty = ty.return_type()
.map(BlockType::Value)
.unwrap_or(BlockType::NoResult);
Ok((params, return_ty))
}
let params = ty.params();
let return_ty = ty
.return_type()
.map(BlockType::Value)
.unwrap_or(BlockType::NoResult);
Ok((params, return_ty))
}
pub fn require_global(&self, idx: u32, mutability: Option<bool>) -> Result<&GlobalType, Error> {
let global = self.globals()
.get(idx as usize)
.ok_or_else(|| Error(format!("Global at index {} doesn't exists", idx)))?;
pub fn require_global(&self, idx: u32, mutability: Option<bool>) -> Result<&GlobalType, Error> {
let global = self
.globals()
.get(idx as usize)
.ok_or_else(|| Error(format!("Global at index {} doesn't exists", idx)))?;
if let Some(expected_mutable) = mutability {
if expected_mutable && !global.is_mutable() {
return Err(Error(format!("Expected global {} to be mutable", idx)));
}
if !expected_mutable && global.is_mutable() {
return Err(Error(format!("Expected global {} to be immutable", idx)));
}
}
Ok(global)
}
if let Some(expected_mutable) = mutability {
if expected_mutable && !global.is_mutable() {
return Err(Error(format!("Expected global {} to be mutable", idx)));
}
if !expected_mutable && global.is_mutable() {
return Err(Error(format!("Expected global {} to be immutable", idx)));
}
}
Ok(global)
}
}
#[derive(Default)]
pub struct ModuleContextBuilder {
memories: Vec<MemoryType>,
tables: Vec<TableType>,
globals: Vec<GlobalType>,
types: Vec<FunctionType>,
func_type_indexes: Vec<u32>,
memories: Vec<MemoryType>,
tables: Vec<TableType>,
globals: Vec<GlobalType>,
types: Vec<FunctionType>,
func_type_indexes: Vec<u32>,
}
impl ModuleContextBuilder {
pub fn new() -> ModuleContextBuilder {
ModuleContextBuilder::default()
}
pub fn new() -> ModuleContextBuilder {
ModuleContextBuilder::default()
}
pub fn push_memory(&mut self, memory: MemoryType) {
self.memories.push(memory);
}
pub fn push_memory(&mut self, memory: MemoryType) {
self.memories.push(memory);
}
pub fn push_table(&mut self, table: TableType) {
self.tables.push(table);
}
pub fn push_table(&mut self, table: TableType) {
self.tables.push(table);
}
pub fn push_global(&mut self, global: GlobalType) {
self.globals.push(global);
}
pub fn push_global(&mut self, global: GlobalType) {
self.globals.push(global);
}
pub fn set_types(&mut self, types: Vec<FunctionType>) {
self.types = types;
}
pub fn set_types(&mut self, types: Vec<FunctionType>) {
self.types = types;
}
pub fn push_func_type_index(&mut self, func_type_index: u32) {
self.func_type_indexes.push(func_type_index);
}
pub fn push_func_type_index(&mut self, func_type_index: u32) {
self.func_type_indexes.push(func_type_index);
}
pub fn build(self) -> ModuleContext {
let ModuleContextBuilder {
memories,
tables,
globals,
types,
func_type_indexes,
} = self;
pub fn build(self) -> ModuleContext {
let ModuleContextBuilder {
memories,
tables,
globals,
types,
func_type_indexes,
} = self;
ModuleContext {
memories,
tables,
globals,
types,
func_type_indexes,
}
}
ModuleContext {
memories,
tables,
globals,
types,
func_type_indexes,
}
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,23 +1,23 @@
#[allow(unused_imports)]
use alloc::prelude::*;
use core::fmt;
#[cfg(feature = "std")]
use std::error;
use core::fmt;
#[cfg(feature = "std")]
use std::collections::HashSet;
#[cfg(not(feature = "std"))]
use hashmap_core::HashSet;
#[cfg(feature = "std")]
use std::collections::HashSet;
use parity_wasm::elements::{
BlockType, External, GlobalEntry, GlobalType, Internal, MemoryType, Module, Instruction,
ResizableLimits, TableType, ValueType, InitExpr, Type,
};
use common::stack;
use self::context::ModuleContextBuilder;
use self::func::FunctionReader;
use memory_units::Pages;
use common::stack;
use isa;
use memory_units::Pages;
use parity_wasm::elements::{
BlockType, External, GlobalEntry, GlobalType, InitExpr, Instruction, Internal, MemoryType,
Module, ResizableLimits, TableType, Type, ValueType,
};
mod context;
mod func;
@ -30,432 +30,427 @@ mod tests;
pub struct Error(String);
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
#[cfg(feature = "std")]
impl error::Error for Error {
fn description(&self) -> &str {
&self.0
}
fn description(&self) -> &str {
&self.0
}
}
impl From<stack::Error> for Error {
fn from(e: stack::Error) -> Error {
Error(format!("Stack: {}", e))
}
fn from(e: stack::Error) -> Error {
Error(format!("Stack: {}", e))
}
}
#[derive(Clone)]
pub struct ValidatedModule {
pub code_map: Vec<isa::Instructions>,
pub module: Module,
pub code_map: Vec<isa::Instructions>,
pub module: Module,
}
impl ::core::ops::Deref for ValidatedModule {
type Target = Module;
fn deref(&self) -> &Module {
&self.module
}
type Target = Module;
fn deref(&self) -> &Module {
&self.module
}
}
pub fn deny_floating_point(module: &Module) -> Result<(), Error> {
if let Some(code) = module.code_section() {
for op in code.bodies().iter().flat_map(|body| body.code().elements()) {
use parity_wasm::elements::Instruction::*;
if let Some(code) = module.code_section() {
for op in code.bodies().iter().flat_map(|body| body.code().elements()) {
use parity_wasm::elements::Instruction::*;
macro_rules! match_eq {
($pattern:pat) => {
|val| if let $pattern = *val { true } else { false }
};
}
macro_rules! match_eq {
($pattern:pat) => {
|val| if let $pattern = *val { true } else { false }
};
}
const DENIED: &[fn(&Instruction) -> bool] = &[
match_eq!(F32Load(_, _)),
match_eq!(F64Load(_, _)),
match_eq!(F32Store(_, _)),
match_eq!(F64Store(_, _)),
match_eq!(F32Const(_)),
match_eq!(F64Const(_)),
match_eq!(F32Eq),
match_eq!(F32Ne),
match_eq!(F32Lt),
match_eq!(F32Gt),
match_eq!(F32Le),
match_eq!(F32Ge),
match_eq!(F64Eq),
match_eq!(F64Ne),
match_eq!(F64Lt),
match_eq!(F64Gt),
match_eq!(F64Le),
match_eq!(F64Ge),
match_eq!(F32Abs),
match_eq!(F32Neg),
match_eq!(F32Ceil),
match_eq!(F32Floor),
match_eq!(F32Trunc),
match_eq!(F32Nearest),
match_eq!(F32Sqrt),
match_eq!(F32Add),
match_eq!(F32Sub),
match_eq!(F32Mul),
match_eq!(F32Div),
match_eq!(F32Min),
match_eq!(F32Max),
match_eq!(F32Copysign),
match_eq!(F64Abs),
match_eq!(F64Neg),
match_eq!(F64Ceil),
match_eq!(F64Floor),
match_eq!(F64Trunc),
match_eq!(F64Nearest),
match_eq!(F64Sqrt),
match_eq!(F64Add),
match_eq!(F64Sub),
match_eq!(F64Mul),
match_eq!(F64Div),
match_eq!(F64Min),
match_eq!(F64Max),
match_eq!(F64Copysign),
match_eq!(F32ConvertSI32),
match_eq!(F32ConvertUI32),
match_eq!(F32ConvertSI64),
match_eq!(F32ConvertUI64),
match_eq!(F32DemoteF64),
match_eq!(F64ConvertSI32),
match_eq!(F64ConvertUI32),
match_eq!(F64ConvertSI64),
match_eq!(F64ConvertUI64),
match_eq!(F64PromoteF32),
match_eq!(F32ReinterpretI32),
match_eq!(F64ReinterpretI64),
match_eq!(I32TruncSF32),
match_eq!(I32TruncUF32),
match_eq!(I32TruncSF64),
match_eq!(I32TruncUF64),
match_eq!(I64TruncSF32),
match_eq!(I64TruncUF32),
match_eq!(I64TruncSF64),
match_eq!(I64TruncUF64),
match_eq!(I32ReinterpretF32),
match_eq!(I64ReinterpretF64),
];
const DENIED: &[fn(&Instruction) -> bool] = &[
match_eq!(F32Load(_, _)),
match_eq!(F64Load(_, _)),
match_eq!(F32Store(_, _)),
match_eq!(F64Store(_, _)),
match_eq!(F32Const(_)),
match_eq!(F64Const(_)),
match_eq!(F32Eq),
match_eq!(F32Ne),
match_eq!(F32Lt),
match_eq!(F32Gt),
match_eq!(F32Le),
match_eq!(F32Ge),
match_eq!(F64Eq),
match_eq!(F64Ne),
match_eq!(F64Lt),
match_eq!(F64Gt),
match_eq!(F64Le),
match_eq!(F64Ge),
match_eq!(F32Abs),
match_eq!(F32Neg),
match_eq!(F32Ceil),
match_eq!(F32Floor),
match_eq!(F32Trunc),
match_eq!(F32Nearest),
match_eq!(F32Sqrt),
match_eq!(F32Add),
match_eq!(F32Sub),
match_eq!(F32Mul),
match_eq!(F32Div),
match_eq!(F32Min),
match_eq!(F32Max),
match_eq!(F32Copysign),
match_eq!(F64Abs),
match_eq!(F64Neg),
match_eq!(F64Ceil),
match_eq!(F64Floor),
match_eq!(F64Trunc),
match_eq!(F64Nearest),
match_eq!(F64Sqrt),
match_eq!(F64Add),
match_eq!(F64Sub),
match_eq!(F64Mul),
match_eq!(F64Div),
match_eq!(F64Min),
match_eq!(F64Max),
match_eq!(F64Copysign),
match_eq!(F32ConvertSI32),
match_eq!(F32ConvertUI32),
match_eq!(F32ConvertSI64),
match_eq!(F32ConvertUI64),
match_eq!(F32DemoteF64),
match_eq!(F64ConvertSI32),
match_eq!(F64ConvertUI32),
match_eq!(F64ConvertSI64),
match_eq!(F64ConvertUI64),
match_eq!(F64PromoteF32),
match_eq!(F32ReinterpretI32),
match_eq!(F64ReinterpretI64),
match_eq!(I32TruncSF32),
match_eq!(I32TruncUF32),
match_eq!(I32TruncSF64),
match_eq!(I32TruncUF64),
match_eq!(I64TruncSF32),
match_eq!(I64TruncUF32),
match_eq!(I64TruncSF64),
match_eq!(I64TruncUF64),
match_eq!(I32ReinterpretF32),
match_eq!(I64ReinterpretF64),
];
if DENIED.iter().any(|is_denied| is_denied(op)) {
return Err(Error(format!("Floating point operation denied: {:?}", op)));
}
}
}
if DENIED.iter().any(|is_denied| is_denied(op)) {
return Err(Error(format!("Floating point operation denied: {:?}", op)));
}
}
}
if let (Some(sec), Some(types)) = (module.function_section(), module.type_section()) {
use parity_wasm::elements::{Type, ValueType};
if let (Some(sec), Some(types)) = (module.function_section(), module.type_section()) {
use parity_wasm::elements::{Type, ValueType};
let types = types.types();
let types = types.types();
for sig in sec.entries() {
if let Some(typ) = types.get(sig.type_ref() as usize) {
match *typ {
Type::Function(ref func) => {
if func.params()
.iter()
.chain(func.return_type().as_ref())
.any(|&typ| typ == ValueType::F32 || typ == ValueType::F64)
{
return Err(Error(format!("Use of floating point types denied")));
}
}
}
}
}
}
for sig in sec.entries() {
if let Some(typ) = types.get(sig.type_ref() as usize) {
match *typ {
Type::Function(ref func) => {
if func
.params()
.iter()
.chain(func.return_type().as_ref())
.any(|&typ| typ == ValueType::F32 || typ == ValueType::F64)
{
return Err(Error(format!("Use of floating point types denied")));
}
}
}
}
}
}
Ok(())
Ok(())
}
pub fn validate_module(module: Module) -> Result<ValidatedModule, Error> {
let mut context_builder = ModuleContextBuilder::new();
let mut imported_globals = Vec::new();
let mut code_map = Vec::new();
let mut context_builder = ModuleContextBuilder::new();
let mut imported_globals = Vec::new();
let mut code_map = Vec::new();
// Copy types from module as is.
context_builder.set_types(
module
.type_section()
.map(|ts| {
ts.types()
.into_iter()
.map(|&Type::Function(ref ty)| ty)
.cloned()
.collect()
})
.unwrap_or_default(),
);
// Copy types from module as is.
context_builder.set_types(
module
.type_section()
.map(|ts| {
ts.types()
.into_iter()
.map(|&Type::Function(ref ty)| ty)
.cloned()
.collect()
})
.unwrap_or_default(),
);
// Fill elements with imported values.
for import_entry in module
.import_section()
.map(|i| i.entries())
.unwrap_or_default()
{
match *import_entry.external() {
External::Function(idx) => context_builder.push_func_type_index(idx),
External::Table(ref table) => context_builder.push_table(table.clone()),
External::Memory(ref memory) => context_builder.push_memory(memory.clone()),
External::Global(ref global) => {
context_builder.push_global(global.clone());
imported_globals.push(global.clone());
}
}
}
// Fill elements with imported values.
for import_entry in module
.import_section()
.map(|i| i.entries())
.unwrap_or_default()
{
match *import_entry.external() {
External::Function(idx) => context_builder.push_func_type_index(idx),
External::Table(ref table) => context_builder.push_table(table.clone()),
External::Memory(ref memory) => context_builder.push_memory(memory.clone()),
External::Global(ref global) => {
context_builder.push_global(global.clone());
imported_globals.push(global.clone());
}
}
}
// Concatenate elements with defined in the module.
if let Some(function_section) = module.function_section() {
for func_entry in function_section.entries() {
context_builder.push_func_type_index(func_entry.type_ref())
}
}
if let Some(table_section) = module.table_section() {
for table_entry in table_section.entries() {
validate_table_type(table_entry)?;
context_builder.push_table(table_entry.clone());
}
}
if let Some(mem_section) = module.memory_section() {
for mem_entry in mem_section.entries() {
validate_memory_type(mem_entry)?;
context_builder.push_memory(mem_entry.clone());
}
}
if let Some(global_section) = module.global_section() {
for global_entry in global_section.entries() {
validate_global_entry(global_entry, &imported_globals)?;
context_builder.push_global(global_entry.global_type().clone());
}
}
// Concatenate elements with defined in the module.
if let Some(function_section) = module.function_section() {
for func_entry in function_section.entries() {
context_builder.push_func_type_index(func_entry.type_ref())
}
}
if let Some(table_section) = module.table_section() {
for table_entry in table_section.entries() {
validate_table_type(table_entry)?;
context_builder.push_table(table_entry.clone());
}
}
if let Some(mem_section) = module.memory_section() {
for mem_entry in mem_section.entries() {
validate_memory_type(mem_entry)?;
context_builder.push_memory(mem_entry.clone());
}
}
if let Some(global_section) = module.global_section() {
for global_entry in global_section.entries() {
validate_global_entry(global_entry, &imported_globals)?;
context_builder.push_global(global_entry.global_type().clone());
}
}
let context = context_builder.build();
let context = context_builder.build();
let function_section_len = module
.function_section()
.map(|s| s.entries().len())
.unwrap_or(0);
let code_section_len = module.code_section().map(|s| s.bodies().len()).unwrap_or(0);
if function_section_len != code_section_len {
return Err(Error(format!(
"length of function section is {}, while len of code section is {}",
function_section_len,
code_section_len
)));
}
let function_section_len = module
.function_section()
.map(|s| s.entries().len())
.unwrap_or(0);
let code_section_len = module.code_section().map(|s| s.bodies().len()).unwrap_or(0);
if function_section_len != code_section_len {
return Err(Error(format!(
"length of function section is {}, while len of code section is {}",
function_section_len, code_section_len
)));
}
// validate every function body in user modules
if function_section_len != 0 {
// tests use invalid code
let function_section = module.function_section().expect(
"function_section_len != 0; qed",
);
let code_section = module.code_section().expect(
"function_section_len != 0; function_section_len == code_section_len; qed",
);
// check every function body
for (index, function) in function_section.entries().iter().enumerate() {
let function_body = code_section.bodies().get(index as usize).ok_or(
Error(format!(
"Missing body for function {}",
index
)),
)?;
let code = FunctionReader::read_function(&context, function, function_body)
.map_err(|e| {
let Error(ref msg) = e;
Error(format!("Function #{} reading/validation error: {}", index, msg))
})?;
code_map.push(code);
}
}
// validate every function body in user modules
if function_section_len != 0 {
// tests use invalid code
let function_section = module
.function_section()
.expect("function_section_len != 0; qed");
let code_section = module
.code_section()
.expect("function_section_len != 0; function_section_len == code_section_len; qed");
// check every function body
for (index, function) in function_section.entries().iter().enumerate() {
let function_body = code_section
.bodies()
.get(index as usize)
.ok_or(Error(format!("Missing body for function {}", index)))?;
let code =
FunctionReader::read_function(&context, function, function_body).map_err(|e| {
let Error(ref msg) = e;
Error(format!(
"Function #{} reading/validation error: {}",
index, msg
))
})?;
code_map.push(code);
}
}
// validate start section
if let Some(start_fn_idx) = module.start_section() {
let (params, return_ty) = context.require_function(start_fn_idx)?;
if return_ty != BlockType::NoResult || params.len() != 0 {
return Err(Error(
"start function expected to have type [] -> []".into(),
));
}
}
// validate start section
if let Some(start_fn_idx) = module.start_section() {
let (params, return_ty) = context.require_function(start_fn_idx)?;
if return_ty != BlockType::NoResult || params.len() != 0 {
return Err(Error(
"start function expected to have type [] -> []".into(),
));
}
}
// validate export section
if let Some(export_section) = module.export_section() {
let mut export_names = HashSet::with_capacity(export_section.entries().len());
for export in export_section.entries() {
// HashSet::insert returns false if item already in set.
let duplicate = export_names.insert(export.field()) == false;
if duplicate {
return Err(Error(
format!("duplicate export {}", export.field()),
));
}
match *export.internal() {
Internal::Function(function_index) => {
context.require_function(function_index)?;
}
Internal::Global(global_index) => {
context.require_global(global_index, Some(false))?;
}
Internal::Memory(memory_index) => {
context.require_memory(memory_index)?;
}
Internal::Table(table_index) => {
context.require_table(table_index)?;
}
}
}
}
// validate export section
if let Some(export_section) = module.export_section() {
let mut export_names = HashSet::with_capacity(export_section.entries().len());
for export in export_section.entries() {
// HashSet::insert returns false if item already in set.
let duplicate = export_names.insert(export.field()) == false;
if duplicate {
return Err(Error(format!("duplicate export {}", export.field())));
}
match *export.internal() {
Internal::Function(function_index) => {
context.require_function(function_index)?;
}
Internal::Global(global_index) => {
context.require_global(global_index, Some(false))?;
}
Internal::Memory(memory_index) => {
context.require_memory(memory_index)?;
}
Internal::Table(table_index) => {
context.require_table(table_index)?;
}
}
}
}
// validate import section
if let Some(import_section) = module.import_section() {
for import in import_section.entries() {
match *import.external() {
External::Function(function_type_index) => {
context.require_function_type(function_type_index)?;
}
External::Global(ref global_type) => {
if global_type.is_mutable() {
return Err(Error(format!(
"trying to import mutable global {}",
import.field()
)));
}
}
External::Memory(ref memory_type) => {
validate_memory_type(memory_type)?;
}
External::Table(ref table_type) => {
validate_table_type(table_type)?;
}
}
}
}
// validate import section
if let Some(import_section) = module.import_section() {
for import in import_section.entries() {
match *import.external() {
External::Function(function_type_index) => {
context.require_function_type(function_type_index)?;
}
External::Global(ref global_type) => {
if global_type.is_mutable() {
return Err(Error(format!(
"trying to import mutable global {}",
import.field()
)));
}
}
External::Memory(ref memory_type) => {
validate_memory_type(memory_type)?;
}
External::Table(ref table_type) => {
validate_table_type(table_type)?;
}
}
}
}
// there must be no greater than 1 table in tables index space
if context.tables().len() > 1 {
return Err(Error(format!(
"too many tables in index space: {}",
context.tables().len()
)));
}
// there must be no greater than 1 table in tables index space
if context.tables().len() > 1 {
return Err(Error(format!(
"too many tables in index space: {}",
context.tables().len()
)));
}
// there must be no greater than 1 linear memory in memory index space
if context.memories().len() > 1 {
return Err(Error(format!(
"too many memory regions in index space: {}",
context.memories().len()
)));
}
// there must be no greater than 1 linear memory in memory index space
if context.memories().len() > 1 {
return Err(Error(format!(
"too many memory regions in index space: {}",
context.memories().len()
)));
}
// use data section to initialize linear memory regions
if let Some(data_section) = module.data_section() {
for data_segment in data_section.entries() {
context.require_memory(data_segment.index())?;
let init_ty = expr_const_type(data_segment.offset(), context.globals())?;
if init_ty != ValueType::I32 {
return Err(Error("segment offset should return I32".into()));
}
}
}
// use data section to initialize linear memory regions
if let Some(data_section) = module.data_section() {
for data_segment in data_section.entries() {
context.require_memory(data_segment.index())?;
let init_ty = expr_const_type(data_segment.offset(), context.globals())?;
if init_ty != ValueType::I32 {
return Err(Error("segment offset should return I32".into()));
}
}
}
// use element section to fill tables
if let Some(element_section) = module.elements_section() {
for element_segment in element_section.entries() {
context.require_table(element_segment.index())?;
// use element section to fill tables
if let Some(element_section) = module.elements_section() {
for element_segment in element_section.entries() {
context.require_table(element_segment.index())?;
let init_ty = expr_const_type(element_segment.offset(), context.globals())?;
if init_ty != ValueType::I32 {
return Err(Error("segment offset should return I32".into()));
}
let init_ty = expr_const_type(element_segment.offset(), context.globals())?;
if init_ty != ValueType::I32 {
return Err(Error("segment offset should return I32".into()));
}
for function_index in element_segment.members() {
context.require_function(*function_index)?;
}
}
}
for function_index in element_segment.members() {
context.require_function(*function_index)?;
}
}
}
Ok(ValidatedModule {
module,
code_map,
})
Ok(ValidatedModule { module, code_map })
}
fn validate_limits(limits: &ResizableLimits) -> Result<(), Error> {
if let Some(maximum) = limits.maximum() {
if limits.initial() > maximum {
return Err(Error(format!(
"maximum limit {} is less than minimum {}",
maximum,
limits.initial()
)));
}
}
Ok(())
if let Some(maximum) = limits.maximum() {
if limits.initial() > maximum {
return Err(Error(format!(
"maximum limit {} is less than minimum {}",
maximum,
limits.initial()
)));
}
}
Ok(())
}
fn validate_memory_type(memory_type: &MemoryType) -> Result<(), Error> {
let initial: Pages = Pages(memory_type.limits().initial() as usize);
let maximum: Option<Pages> = memory_type.limits().maximum().map(|m| Pages(m as usize));
::memory::validate_memory(initial, maximum).map_err(Error)
let initial: Pages = Pages(memory_type.limits().initial() as usize);
let maximum: Option<Pages> = memory_type.limits().maximum().map(|m| Pages(m as usize));
::memory::validate_memory(initial, maximum).map_err(Error)
}
fn validate_table_type(table_type: &TableType) -> Result<(), Error> {
validate_limits(table_type.limits())
validate_limits(table_type.limits())
}
fn validate_global_entry(global_entry: &GlobalEntry, globals: &[GlobalType]) -> Result<(), Error> {
let init = global_entry.init_expr();
let init_expr_ty = expr_const_type(init, globals)?;
if init_expr_ty != global_entry.global_type().content_type() {
return Err(Error(format!(
"Trying to initialize variable of type {:?} with value of type {:?}",
global_entry.global_type().content_type(),
init_expr_ty
)));
}
Ok(())
let init = global_entry.init_expr();
let init_expr_ty = expr_const_type(init, globals)?;
if init_expr_ty != global_entry.global_type().content_type() {
return Err(Error(format!(
"Trying to initialize variable of type {:?} with value of type {:?}",
global_entry.global_type().content_type(),
init_expr_ty
)));
}
Ok(())
}
/// Returns type of this constant expression.
fn expr_const_type(init_expr: &InitExpr, globals: &[GlobalType]) -> Result<ValueType, Error> {
let code = init_expr.code();
if code.len() != 2 {
return Err(Error(
"Init expression should always be with length 2".into(),
));
}
let expr_ty: ValueType = match code[0] {
Instruction::I32Const(_) => ValueType::I32,
Instruction::I64Const(_) => ValueType::I64,
Instruction::F32Const(_) => ValueType::F32,
Instruction::F64Const(_) => ValueType::F64,
Instruction::GetGlobal(idx) => {
match globals.get(idx as usize) {
Some(target_global) => {
if target_global.is_mutable() {
return Err(Error(format!("Global {} is mutable", idx)));
}
target_global.content_type()
}
None => {
return Err(Error(
format!("Global {} doesn't exists or not yet defined", idx),
))
}
}
}
_ => return Err(Error("Non constant opcode in init expr".into())),
};
if code[1] != Instruction::End {
return Err(Error("Expression doesn't ends with `end` opcode".into()));
}
Ok(expr_ty)
let code = init_expr.code();
if code.len() != 2 {
return Err(Error(
"Init expression should always be with length 2".into(),
));
}
let expr_ty: ValueType = match code[0] {
Instruction::I32Const(_) => ValueType::I32,
Instruction::I64Const(_) => ValueType::I64,
Instruction::F32Const(_) => ValueType::F32,
Instruction::F64Const(_) => ValueType::F64,
Instruction::GetGlobal(idx) => match globals.get(idx as usize) {
Some(target_global) => {
if target_global.is_mutable() {
return Err(Error(format!("Global {} is mutable", idx)));
}
target_global.content_type()
}
None => {
return Err(Error(format!(
"Global {} doesn't exists or not yet defined",
idx
)));
}
},
_ => return Err(Error("Non constant opcode in init expr".into())),
};
if code[1] != Instruction::End {
return Err(Error("Expression doesn't ends with `end` opcode".into()));
}
Ok(expr_ty)
}

File diff suppressed because it is too large Load Diff

View File

@ -10,124 +10,119 @@ use validation::Error;
/// of a value_type and a count.
#[derive(Debug)]
pub struct Locals<'a> {
params: &'a [ValueType],
local_groups: &'a [Local],
count: u32,
params: &'a [ValueType],
local_groups: &'a [Local],
count: u32,
}
impl<'a> Locals<'a> {
/// Create a new wrapper around declared variables and parameters.
pub fn new(params: &'a [ValueType], local_groups: &'a [Local]) -> Result<Locals<'a>, Error> {
let mut acc = params.len() as u32;
for locals_group in local_groups {
acc = acc
.checked_add(locals_group.count())
.ok_or_else(||
Error(String::from("Locals range not in 32-bit range"))
)?;
}
/// Create a new wrapper around declared variables and parameters.
pub fn new(params: &'a [ValueType], local_groups: &'a [Local]) -> Result<Locals<'a>, Error> {
let mut acc = params.len() as u32;
for locals_group in local_groups {
acc = acc
.checked_add(locals_group.count())
.ok_or_else(|| Error(String::from("Locals range not in 32-bit range")))?;
}
Ok(Locals {
params,
local_groups,
count: acc,
})
}
Ok(Locals {
params,
local_groups,
count: acc,
})
}
/// Returns parameter count.
pub fn param_count(&self) -> u32 {
self.params.len() as u32
}
/// Returns parameter count.
pub fn param_count(&self) -> u32 {
self.params.len() as u32
}
/// Returns total count of all declared locals and paramaterers.
pub fn count(&self) -> u32 {
self.count
}
/// Returns total count of all declared locals and paramaterers.
pub fn count(&self) -> u32 {
self.count
}
/// Returns the type of a local variable (either a declared local or a param).
///
/// Returns `Err` in the case of overflow or when idx falls out of range.
pub fn type_of_local(&self, idx: u32) -> Result<ValueType, Error> {
if let Some(param) = self.params.get(idx as usize) {
return Ok(*param);
}
/// Returns the type of a local variable (either a declared local or a param).
///
/// Returns `Err` in the case of overflow or when idx falls out of range.
pub fn type_of_local(&self, idx: u32) -> Result<ValueType, Error> {
if let Some(param) = self.params.get(idx as usize) {
return Ok(*param);
}
// If an index doesn't point to a param, then we have to look into local declarations.
let mut start_idx = self.param_count();
for locals_group in self.local_groups {
let end_idx = start_idx
.checked_add(locals_group.count())
.ok_or_else(|| Error(String::from("Locals range not in 32-bit range")))?;
// If an index doesn't point to a param, then we have to look into local declarations.
let mut start_idx = self.param_count();
for locals_group in self.local_groups {
let end_idx = start_idx
.checked_add(locals_group.count())
.ok_or_else(|| Error(String::from("Locals range not in 32-bit range")))?;
if idx >= start_idx && idx < end_idx {
return Ok(locals_group.value_type());
}
if idx >= start_idx && idx < end_idx {
return Ok(locals_group.value_type());
}
start_idx = end_idx;
}
start_idx = end_idx;
}
// We didn't find anything, that's an error.
// At this moment `start_idx` should hold the count of all locals
// (since it's either set to the `end_idx` or equal to `params.len()`)
let total_count = start_idx;
// We didn't find anything, that's an error.
// At this moment `start_idx` should hold the count of all locals
// (since it's either set to the `end_idx` or equal to `params.len()`)
let total_count = start_idx;
Err(Error(format!(
"Trying to access local with index {} when there are only {} locals",
idx, total_count
)))
}
Err(Error(format!(
"Trying to access local with index {} when there are only {} locals",
idx, total_count
)))
}
}
#[cfg(test)]
mod tests {
use super::*;
use super::*;
#[test]
fn locals_it_works() {
let params = vec![ValueType::I32, ValueType::I64];
let local_groups = vec![Local::new(2, ValueType::F32), Local::new(2, ValueType::F64)];
let locals = Locals::new(&params, &local_groups).unwrap();
#[test]
fn locals_it_works() {
let params = vec![ValueType::I32, ValueType::I64];
let local_groups = vec![Local::new(2, ValueType::F32), Local::new(2, ValueType::F64)];
let locals = Locals::new(&params, &local_groups).unwrap();
assert_matches!(locals.type_of_local(0), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(1), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(2), Ok(ValueType::F32));
assert_matches!(locals.type_of_local(3), Ok(ValueType::F32));
assert_matches!(locals.type_of_local(4), Ok(ValueType::F64));
assert_matches!(locals.type_of_local(5), Ok(ValueType::F64));
assert_matches!(locals.type_of_local(6), Err(_));
}
assert_matches!(locals.type_of_local(0), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(1), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(2), Ok(ValueType::F32));
assert_matches!(locals.type_of_local(3), Ok(ValueType::F32));
assert_matches!(locals.type_of_local(4), Ok(ValueType::F64));
assert_matches!(locals.type_of_local(5), Ok(ValueType::F64));
assert_matches!(locals.type_of_local(6), Err(_));
}
#[test]
fn locals_no_declared_locals() {
let params = vec![ValueType::I32];
let locals = Locals::new(&params, &[]).unwrap();
#[test]
fn locals_no_declared_locals() {
let params = vec![ValueType::I32];
let locals = Locals::new(&params, &[]).unwrap();
assert_matches!(locals.type_of_local(0), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(1), Err(_));
}
assert_matches!(locals.type_of_local(0), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(1), Err(_));
}
#[test]
fn locals_no_params() {
let local_groups = vec![Local::new(2, ValueType::I32), Local::new(3, ValueType::I64)];
let locals = Locals::new(&[], &local_groups).unwrap();
#[test]
fn locals_no_params() {
let local_groups = vec![Local::new(2, ValueType::I32), Local::new(3, ValueType::I64)];
let locals = Locals::new(&[], &local_groups).unwrap();
assert_matches!(locals.type_of_local(0), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(1), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(2), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(3), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(4), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(5), Err(_));
}
assert_matches!(locals.type_of_local(0), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(1), Ok(ValueType::I32));
assert_matches!(locals.type_of_local(2), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(3), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(4), Ok(ValueType::I64));
assert_matches!(locals.type_of_local(5), Err(_));
}
#[test]
fn locals_u32_overflow() {
let local_groups = vec![
Local::new(u32::max_value(), ValueType::I32),
Local::new(1, ValueType::I64),
];
assert_matches!(
Locals::new(&[], &local_groups),
Err(_)
);
}
#[test]
fn locals_u32_overflow() {
let local_groups = vec![
Local::new(u32::max_value(), ValueType::I32),
Local::new(1, ValueType::I64),
];
assert_matches!(Locals::new(&[], &local_groups), Err(_));
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,12 +1,12 @@
mod run;
macro_rules! run_test {
($label: expr, $test_name: ident) => (
($label: expr, $test_name: ident) => {
#[test]
fn $test_name() {
self::run::spec($label)
}
);
};
}
run_test!("address", wasm_address);

View File

@ -1,22 +1,24 @@
#![cfg(test)]
use std::fs::File;
use std::collections::HashMap;
use std::fs::File;
use wabt::script::{self, Action, Command, CommandKind, ScriptParser, Value};
use wasmi::memory_units::Pages;
use wasmi::{Error as InterpreterError, Externals, FuncInstance, FuncRef, GlobalDescriptor,
GlobalInstance, GlobalRef, ImportResolver, ImportsBuilder, MemoryDescriptor,
MemoryInstance, MemoryRef, Module, ModuleImportResolver, ModuleInstance, ModuleRef,
RuntimeArgs, RuntimeValue, Signature, TableDescriptor, TableInstance, TableRef, Trap};
use wasmi::{
Error as InterpreterError, Externals, FuncInstance, FuncRef, GlobalDescriptor, GlobalInstance,
GlobalRef, ImportResolver, ImportsBuilder, MemoryDescriptor, MemoryInstance, MemoryRef, Module,
ModuleImportResolver, ModuleInstance, ModuleRef, RuntimeArgs, RuntimeValue, Signature,
TableDescriptor, TableInstance, TableRef, Trap,
};
fn spec_to_runtime_value(val: Value<u32, u64>) -> RuntimeValue {
match val {
Value::I32(v) => RuntimeValue::I32(v),
Value::I64(v) => RuntimeValue::I64(v),
Value::F32(v) => RuntimeValue::F32(v.into()),
Value::F64(v) => RuntimeValue::F64(v.into()),
}
match val {
Value::I32(v) => RuntimeValue::I32(v),
Value::I64(v) => RuntimeValue::I64(v),
Value::F32(v) => RuntimeValue::F32(v.into()),
Value::F64(v) => RuntimeValue::F64(v.into()),
}
}
#[derive(Debug)]
@ -48,15 +50,15 @@ struct SpecModule {
}
impl SpecModule {
fn new() -> Self {
SpecModule {
table: TableInstance::alloc(10, Some(20)).unwrap(),
memory: MemoryInstance::alloc(Pages(1), Some(Pages(2))).unwrap(),
global_i32: GlobalInstance::alloc(RuntimeValue::I32(666), false),
global_f32: GlobalInstance::alloc(RuntimeValue::F32(666.0.into()), false),
global_f64: GlobalInstance::alloc(RuntimeValue::F64(666.0.into()), false),
}
}
fn new() -> Self {
SpecModule {
table: TableInstance::alloc(10, Some(20)).unwrap(),
memory: MemoryInstance::alloc(Pages(1), Some(Pages(2))).unwrap(),
global_i32: GlobalInstance::alloc(RuntimeValue::I32(666), false),
global_f32: GlobalInstance::alloc(RuntimeValue::F32(666.0.into()), false),
global_f64: GlobalInstance::alloc(RuntimeValue::F64(666.0.into()), false),
}
}
}
const PRINT_FUNC_INDEX: usize = 0;
@ -83,29 +85,29 @@ impl ModuleImportResolver for SpecModule {
field_name: &str,
func_type: &Signature,
) -> Result<FuncRef, InterpreterError> {
let index = match field_name {
"print" => PRINT_FUNC_INDEX,
"print_i32" => PRINT_FUNC_INDEX,
"print_i32_f32" => PRINT_FUNC_INDEX,
"print_f64_f64" => PRINT_FUNC_INDEX,
"print_f32" => PRINT_FUNC_INDEX,
"print_f64" => PRINT_FUNC_INDEX,
_ => {
return Err(InterpreterError::Instantiation(format!(
"Unknown host func import {}",
field_name
)));
}
};
let index = match field_name {
"print" => PRINT_FUNC_INDEX,
"print_i32" => PRINT_FUNC_INDEX,
"print_i32_f32" => PRINT_FUNC_INDEX,
"print_f64_f64" => PRINT_FUNC_INDEX,
"print_f32" => PRINT_FUNC_INDEX,
"print_f64" => PRINT_FUNC_INDEX,
_ => {
return Err(InterpreterError::Instantiation(format!(
"Unknown host func import {}",
field_name
)));
}
};
if func_type.return_type().is_some() {
return Err(InterpreterError::Instantiation(
"Function `print_` have unit return type".into(),
));
}
if func_type.return_type().is_some() {
return Err(InterpreterError::Instantiation(
"Function `print_` have unit return type".into(),
));
}
let func = FuncInstance::alloc_host(func_type.clone(), index);
return Ok(func);
return Ok(func);
}
fn resolve_global(
@ -113,380 +115,389 @@ impl ModuleImportResolver for SpecModule {
field_name: &str,
_global_type: &GlobalDescriptor,
) -> Result<GlobalRef, InterpreterError> {
match field_name {
"global_i32" => Ok(self.global_i32.clone()),
"global_f32" => Ok(self.global_f32.clone()),
"global_f64" => Ok(self.global_f64.clone()),
_ => Err(InterpreterError::Instantiation(format!(
"Unknown host global import {}",
field_name
))),
}
}
match field_name {
"global_i32" => Ok(self.global_i32.clone()),
"global_f32" => Ok(self.global_f32.clone()),
"global_f64" => Ok(self.global_f64.clone()),
_ => Err(InterpreterError::Instantiation(format!(
"Unknown host global import {}",
field_name
))),
}
}
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, InterpreterError> {
if field_name == "memory" {
return Ok(self.memory.clone());
}
fn resolve_memory(
&self,
field_name: &str,
_memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, InterpreterError> {
if field_name == "memory" {
return Ok(self.memory.clone());
}
Err(InterpreterError::Instantiation(format!(
"Unknown host memory import {}",
field_name
)))
}
Err(InterpreterError::Instantiation(format!(
"Unknown host memory import {}",
field_name
)))
}
fn resolve_table(
&self,
field_name: &str,
_table_type: &TableDescriptor,
) -> Result<TableRef, InterpreterError> {
if field_name == "table" {
return Ok(self.table.clone());
}
fn resolve_table(
&self,
field_name: &str,
_table_type: &TableDescriptor,
) -> Result<TableRef, InterpreterError> {
if field_name == "table" {
return Ok(self.table.clone());
}
Err(InterpreterError::Instantiation(format!(
"Unknown host table import {}",
field_name
)))
}
Err(InterpreterError::Instantiation(format!(
"Unknown host table import {}",
field_name
)))
}
}
struct SpecDriver {
spec_module: SpecModule,
instances: HashMap<String, ModuleRef>,
last_module: Option<ModuleRef>,
spec_module: SpecModule,
instances: HashMap<String, ModuleRef>,
last_module: Option<ModuleRef>,
}
impl SpecDriver {
fn new() -> SpecDriver {
SpecDriver {
spec_module: SpecModule::new(),
instances: HashMap::new(),
last_module: None,
}
}
fn new() -> SpecDriver {
SpecDriver {
spec_module: SpecModule::new(),
instances: HashMap::new(),
last_module: None,
}
}
fn spec_module(&mut self) -> &mut SpecModule {
&mut self.spec_module
}
fn spec_module(&mut self) -> &mut SpecModule {
&mut self.spec_module
}
fn add_module(&mut self, name: Option<String>, module: ModuleRef) {
self.last_module = Some(module.clone());
if let Some(name) = name {
self.instances.insert(name, module);
}
}
fn add_module(&mut self, name: Option<String>, module: ModuleRef) {
self.last_module = Some(module.clone());
if let Some(name) = name {
self.instances.insert(name, module);
}
}
fn module(&self, name: &str) -> Result<ModuleRef, InterpreterError> {
self.instances.get(name).cloned().ok_or_else(|| {
InterpreterError::Instantiation(format!("Module not registered {}", name))
})
}
fn module(&self, name: &str) -> Result<ModuleRef, InterpreterError> {
self.instances.get(name).cloned().ok_or_else(|| {
InterpreterError::Instantiation(format!("Module not registered {}", name))
})
}
fn module_or_last(&self, name: Option<&str>) -> Result<ModuleRef, InterpreterError> {
match name {
Some(name) => self.module(name),
None => self.last_module
.clone()
.ok_or_else(|| InterpreterError::Instantiation("No modules registered".into())),
}
}
fn module_or_last(&self, name: Option<&str>) -> Result<ModuleRef, InterpreterError> {
match name {
Some(name) => self.module(name),
None => self
.last_module
.clone()
.ok_or_else(|| InterpreterError::Instantiation("No modules registered".into())),
}
}
}
impl ImportResolver for SpecDriver {
fn resolve_func(
&self,
module_name: &str,
field_name: &str,
func_type: &Signature,
) -> Result<FuncRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_func(field_name, func_type)
} else {
self.module(module_name)?
.resolve_func(field_name, func_type)
}
}
fn resolve_func(
&self,
module_name: &str,
field_name: &str,
func_type: &Signature,
) -> Result<FuncRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_func(field_name, func_type)
} else {
self.module(module_name)?
.resolve_func(field_name, func_type)
}
}
fn resolve_global(
&self,
module_name: &str,
field_name: &str,
global_type: &GlobalDescriptor,
) -> Result<GlobalRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_global(field_name, global_type)
} else {
self.module(module_name)?
.resolve_global(field_name, global_type)
}
}
fn resolve_global(
&self,
module_name: &str,
field_name: &str,
global_type: &GlobalDescriptor,
) -> Result<GlobalRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_global(field_name, global_type)
} else {
self.module(module_name)?
.resolve_global(field_name, global_type)
}
}
fn resolve_memory(
&self,
module_name: &str,
field_name: &str,
memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_memory(field_name, memory_type)
} else {
self.module(module_name)?
.resolve_memory(field_name, memory_type)
}
}
fn resolve_memory(
&self,
module_name: &str,
field_name: &str,
memory_type: &MemoryDescriptor,
) -> Result<MemoryRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_memory(field_name, memory_type)
} else {
self.module(module_name)?
.resolve_memory(field_name, memory_type)
}
}
fn resolve_table(
&self,
module_name: &str,
field_name: &str,
table_type: &TableDescriptor,
) -> Result<TableRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_table(field_name, table_type)
} else {
self.module(module_name)?
.resolve_table(field_name, table_type)
}
}
fn resolve_table(
&self,
module_name: &str,
field_name: &str,
table_type: &TableDescriptor,
) -> Result<TableRef, InterpreterError> {
if module_name == "spectest" {
self.spec_module.resolve_table(field_name, table_type)
} else {
self.module(module_name)?
.resolve_table(field_name, table_type)
}
}
}
fn try_load_module(wasm: &[u8]) -> Result<Module, Error> {
Module::from_buffer(wasm).map_err(|e| Error::Load(e.to_string()))
Module::from_buffer(wasm).map_err(|e| Error::Load(e.to_string()))
}
fn try_load(wasm: &[u8], spec_driver: &mut SpecDriver) -> Result<(), Error> {
let module = try_load_module(wasm)?;
let instance = ModuleInstance::new(&module, &ImportsBuilder::default())?;
instance
.run_start(spec_driver.spec_module())
.map_err(|trap| Error::Start(trap))?;
Ok(())
let module = try_load_module(wasm)?;
let instance = ModuleInstance::new(&module, &ImportsBuilder::default())?;
instance
.run_start(spec_driver.spec_module())
.map_err(|trap| Error::Start(trap))?;
Ok(())
}
fn load_module(
wasm: &[u8],
name: &Option<String>,
spec_driver: &mut SpecDriver,
wasm: &[u8],
name: &Option<String>,
spec_driver: &mut SpecDriver,
) -> Result<ModuleRef, Error> {
let module = try_load_module(wasm)?;
let instance = ModuleInstance::new(&module, spec_driver)
.map_err(|e| Error::Load(e.to_string()))?
.run_start(spec_driver.spec_module())
.map_err(|trap| Error::Start(trap))?;
let module = try_load_module(wasm)?;
let instance = ModuleInstance::new(&module, spec_driver)
.map_err(|e| Error::Load(e.to_string()))?
.run_start(spec_driver.spec_module())
.map_err(|trap| Error::Start(trap))?;
let module_name = name.clone();
spec_driver.add_module(module_name, instance.clone());
let module_name = name.clone();
spec_driver.add_module(module_name, instance.clone());
Ok(instance)
Ok(instance)
}
fn run_action(
program: &mut SpecDriver,
action: &Action<u32, u64>,
program: &mut SpecDriver,
action: &Action<u32, u64>,
) -> Result<Option<RuntimeValue>, InterpreterError> {
match *action {
Action::Invoke {
ref module,
ref field,
ref args,
} => {
let module = program
.module_or_last(module.as_ref().map(|x| x.as_ref()))
.expect(&format!(
"Expected program to have loaded module {:?}",
module
));
let vec_args = args.iter()
.cloned()
.map(spec_to_runtime_value)
.collect::<Vec<_>>();
module.invoke_export(field, &vec_args, program.spec_module())
}
Action::Get {
ref module,
ref field,
..
} => {
let module = program
.module_or_last(module.as_ref().map(|x| x.as_ref()))
.expect(&format!(
"Expected program to have loaded module {:?}",
module
));
let global = module
.export_by_name(&field)
.ok_or_else(|| {
InterpreterError::Global(format!("Expected to have export with name {}", field))
})?
.as_global()
.cloned()
.ok_or_else(|| {
InterpreterError::Global(format!("Expected export {} to be a global", field))
})?;
Ok(Some(global.get()))
}
}
match *action {
Action::Invoke {
ref module,
ref field,
ref args,
} => {
let module = program
.module_or_last(module.as_ref().map(|x| x.as_ref()))
.expect(&format!(
"Expected program to have loaded module {:?}",
module
));
let vec_args = args
.iter()
.cloned()
.map(spec_to_runtime_value)
.collect::<Vec<_>>();
module.invoke_export(field, &vec_args, program.spec_module())
}
Action::Get {
ref module,
ref field,
..
} => {
let module = program
.module_or_last(module.as_ref().map(|x| x.as_ref()))
.expect(&format!(
"Expected program to have loaded module {:?}",
module
));
let global = module
.export_by_name(&field)
.ok_or_else(|| {
InterpreterError::Global(format!("Expected to have export with name {}", field))
})?
.as_global()
.cloned()
.ok_or_else(|| {
InterpreterError::Global(format!("Expected export {} to be a global", field))
})?;
Ok(Some(global.get()))
}
}
}
pub fn spec(name: &str) {
println!("running test: {}", name);
try_spec(name).expect("Failed to run spec");
println!("running test: {}", name);
try_spec(name).expect("Failed to run spec");
}
fn try_spec(name: &str) -> Result<(), Error> {
let mut spec_driver = SpecDriver::new();
let spec_script_path = format!("tests/spec/testsuite/{}.wast", name);
let mut spec_driver = SpecDriver::new();
let spec_script_path = format!("tests/spec/testsuite/{}.wast", name);
use std::io::Read;
let mut spec_source = Vec::new();
let mut spec_file = File::open(&spec_script_path).expect("Can't open file");
spec_file.read_to_end(&mut spec_source).expect("Can't read file");
use std::io::Read;
let mut spec_source = Vec::new();
let mut spec_file = File::open(&spec_script_path).expect("Can't open file");
spec_file
.read_to_end(&mut spec_source)
.expect("Can't read file");
let mut parser = ScriptParser::from_source_and_name(&spec_source, &format!("{}.wast", name)).expect("Can't read spec script");
let mut errors = vec![];
let mut parser = ScriptParser::from_source_and_name(&spec_source, &format!("{}.wast", name))
.expect("Can't read spec script");
let mut errors = vec![];
while let Some(Command { kind, line }) = parser.next()? {
macro_rules! assert_eq {
($a:expr, $b:expr) => {{
let (a, b) = ($a, $b);
while let Some(Command { kind, line }) = parser.next()? {
macro_rules! assert_eq {
($a:expr, $b:expr) => {{
let (a, b) = ($a, $b);
if a != b {
errors.push(format!(
r#"ERROR (line {}):
if a != b {
errors.push(format!(
r#"ERROR (line {}):
expected: {:?}
got: {:?}
"#,
line, b, a,
));
}
}};
}
line, b, a,
));
}
}};
}
println!("Running spec cmd {}: {:?}", line, kind);
println!("Running spec cmd {}: {:?}", line, kind);
match kind {
CommandKind::Module { name, module, .. } => {
load_module(&module.into_vec(), &name, &mut spec_driver)
.expect("Failed to load module");
}
CommandKind::AssertReturn { action, expected } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => {
let spec_expected = expected
.iter()
.cloned()
.map(spec_to_runtime_value)
.collect::<Vec<_>>();
let actual_result = result.into_iter().collect::<Vec<RuntimeValue>>();
for (actual_result, spec_expected) in
actual_result.iter().zip(spec_expected.iter())
{
assert_eq!(actual_result.value_type(), spec_expected.value_type());
// f32::NAN != f32::NAN
match spec_expected {
&RuntimeValue::F32(val) if val.is_nan() => match actual_result {
&RuntimeValue::F32(val) => assert!(val.is_nan()),
_ => unreachable!(), // checked above that types are same
},
&RuntimeValue::F64(val) if val.is_nan() => match actual_result {
&RuntimeValue::F64(val) => assert!(val.is_nan()),
_ => unreachable!(), // checked above that types are same
},
spec_expected @ _ => assert_eq!(actual_result, spec_expected),
}
}
}
Err(e) => {
panic!("Expected action to return value, got error: {:?}", e);
}
}
}
CommandKind::AssertReturnCanonicalNan { action }
| CommandKind::AssertReturnArithmeticNan { action } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => {
for actual_result in result.into_iter().collect::<Vec<RuntimeValue>>() {
match actual_result {
RuntimeValue::F32(val) => if !val.is_nan() {
panic!("Expected nan value, got {:?}", val)
},
RuntimeValue::F64(val) => if !val.is_nan() {
panic!("Expected nan value, got {:?}", val)
},
val @ _ => {
panic!("Expected action to return float value, got {:?}", val)
}
}
}
}
Err(e) => {
panic!("Expected action to return value, got error: {:?}", e);
}
}
}
CommandKind::AssertExhaustion { action, .. } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => panic!("Expected exhaustion, got result: {:?}", result),
Err(_e) => {},
}
}
CommandKind::AssertTrap { action, .. } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => {
panic!(
"Expected action to result in a trap, got result: {:?}",
result
);
}
Err(_e) => {}
}
}
CommandKind::AssertInvalid { module, .. }
| CommandKind::AssertMalformed { module, .. }
| CommandKind::AssertUnlinkable { module, .. } => {
let module_load = try_load(&module.into_vec(), &mut spec_driver);
match module_load {
Ok(_) => panic!("Expected invalid module definition, got some module!"),
Err(_e) => {},
}
}
CommandKind::AssertUninstantiable { module, .. } => {
match try_load(&module.into_vec(), &mut spec_driver) {
Ok(_) => panic!("Expected error running start function at line {}", line),
Err(_e) => {},
}
}
CommandKind::Register { name, as_name, .. } => {
let module = match spec_driver.module_or_last(name.as_ref().map(|x| x.as_ref())) {
Ok(module) => module,
Err(e) => panic!("No such module, at line {} - ({:?})", e, line),
};
spec_driver.add_module(Some(as_name.clone()), module);
}
CommandKind::PerformAction(action) => match run_action(&mut spec_driver, &action) {
Ok(_) => {}
Err(e) => panic!("Failed to invoke action at line {}: {:?}", line, e),
},
}
}
match kind {
CommandKind::Module { name, module, .. } => {
load_module(&module.into_vec(), &name, &mut spec_driver)
.expect("Failed to load module");
}
CommandKind::AssertReturn { action, expected } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => {
let spec_expected = expected
.iter()
.cloned()
.map(spec_to_runtime_value)
.collect::<Vec<_>>();
let actual_result = result.into_iter().collect::<Vec<RuntimeValue>>();
for (actual_result, spec_expected) in
actual_result.iter().zip(spec_expected.iter())
{
assert_eq!(actual_result.value_type(), spec_expected.value_type());
// f32::NAN != f32::NAN
match spec_expected {
&RuntimeValue::F32(val) if val.is_nan() => match actual_result {
&RuntimeValue::F32(val) => assert!(val.is_nan()),
_ => unreachable!(), // checked above that types are same
},
&RuntimeValue::F64(val) if val.is_nan() => match actual_result {
&RuntimeValue::F64(val) => assert!(val.is_nan()),
_ => unreachable!(), // checked above that types are same
},
spec_expected @ _ => assert_eq!(actual_result, spec_expected),
}
}
}
Err(e) => {
panic!("Expected action to return value, got error: {:?}", e);
}
}
}
CommandKind::AssertReturnCanonicalNan { action }
| CommandKind::AssertReturnArithmeticNan { action } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => {
for actual_result in result.into_iter().collect::<Vec<RuntimeValue>>() {
match actual_result {
RuntimeValue::F32(val) => {
if !val.is_nan() {
panic!("Expected nan value, got {:?}", val)
}
}
RuntimeValue::F64(val) => {
if !val.is_nan() {
panic!("Expected nan value, got {:?}", val)
}
}
val @ _ => {
panic!("Expected action to return float value, got {:?}", val)
}
}
}
}
Err(e) => {
panic!("Expected action to return value, got error: {:?}", e);
}
}
}
CommandKind::AssertExhaustion { action, .. } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => panic!("Expected exhaustion, got result: {:?}", result),
Err(_e) => {}
}
}
CommandKind::AssertTrap { action, .. } => {
let result = run_action(&mut spec_driver, &action);
match result {
Ok(result) => {
panic!(
"Expected action to result in a trap, got result: {:?}",
result
);
}
Err(_e) => {}
}
}
CommandKind::AssertInvalid { module, .. }
| CommandKind::AssertMalformed { module, .. }
| CommandKind::AssertUnlinkable { module, .. } => {
let module_load = try_load(&module.into_vec(), &mut spec_driver);
match module_load {
Ok(_) => panic!("Expected invalid module definition, got some module!"),
Err(_e) => {}
}
}
CommandKind::AssertUninstantiable { module, .. } => {
match try_load(&module.into_vec(), &mut spec_driver) {
Ok(_) => panic!("Expected error running start function at line {}", line),
Err(_e) => {}
}
}
CommandKind::Register { name, as_name, .. } => {
let module = match spec_driver.module_or_last(name.as_ref().map(|x| x.as_ref())) {
Ok(module) => module,
Err(e) => panic!("No such module, at line {} - ({:?})", e, line),
};
spec_driver.add_module(Some(as_name.clone()), module);
}
CommandKind::PerformAction(action) => match run_action(&mut spec_driver, &action) {
Ok(_) => {}
Err(e) => panic!("Failed to invoke action at line {}: {:?}", line, e),
},
}
}
if !errors.is_empty() {
use std::fmt::Write;
let mut out = "\n".to_owned();
for err in errors {
write!(out, "{}", err).expect("Error formatting errors");
}
panic!(out);
}
if !errors.is_empty() {
use std::fmt::Write;
let mut out = "\n".to_owned();
for err in errors {
write!(out, "{}", err).expect("Error formatting errors");
}
panic!(out);
}
Ok(())
Ok(())
}

View File

@ -1,6 +1,6 @@
//! Official spec testsuite.
extern crate wasmi;
extern crate wabt;
extern crate wasmi;
mod spec;