forked from cadey/xesite
205 lines
4.9 KiB
Go
205 lines
4.9 KiB
Go
|
// Copyright (c) 2012 The gocql Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
// Package uuid can be used to generate and parse universally unique
|
||
|
// identifiers, a standardized format in the form of a 128 bit number.
|
||
|
//
|
||
|
// http://tools.ietf.org/html/rfc4122
|
||
|
package uuid
|
||
|
|
||
|
import (
|
||
|
"crypto/rand"
|
||
|
"encoding/hex"
|
||
|
"errors"
|
||
|
"io"
|
||
|
"net"
|
||
|
"strconv"
|
||
|
"time"
|
||
|
)
|
||
|
|
||
|
type UUID [16]byte
|
||
|
|
||
|
var hardwareAddr []byte
|
||
|
|
||
|
const (
|
||
|
VariantNCSCompat = 0
|
||
|
VariantIETF = 2
|
||
|
VariantMicrosoft = 6
|
||
|
VariantFuture = 7
|
||
|
)
|
||
|
|
||
|
func init() {
|
||
|
if interfaces, err := net.Interfaces(); err == nil {
|
||
|
for _, i := range interfaces {
|
||
|
if i.Flags&net.FlagLoopback == 0 && len(i.HardwareAddr) > 0 {
|
||
|
hardwareAddr = i.HardwareAddr
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if hardwareAddr == nil {
|
||
|
// If we failed to obtain the MAC address of the current computer,
|
||
|
// we will use a randomly generated 6 byte sequence instead and set
|
||
|
// the multicast bit as recommended in RFC 4122.
|
||
|
hardwareAddr = make([]byte, 6)
|
||
|
_, err := io.ReadFull(rand.Reader, hardwareAddr)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
hardwareAddr[0] = hardwareAddr[0] | 0x01
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Parse parses a 32 digit hexadecimal number (that might contain hyphens)
|
||
|
// representing an UUID.
|
||
|
func Parse(input string) (UUID, error) {
|
||
|
var u UUID
|
||
|
j := 0
|
||
|
for i := 0; i < len(input); i++ {
|
||
|
b := input[i]
|
||
|
switch {
|
||
|
default:
|
||
|
fallthrough
|
||
|
case j == 32:
|
||
|
goto err
|
||
|
case b == '-':
|
||
|
continue
|
||
|
case '0' <= b && b <= '9':
|
||
|
b -= '0'
|
||
|
case 'a' <= b && b <= 'f':
|
||
|
b -= 'a' - 10
|
||
|
case 'A' <= b && b <= 'F':
|
||
|
b -= 'A' - 10
|
||
|
}
|
||
|
u[j/2] |= b << byte(^j&1<<2)
|
||
|
j++
|
||
|
}
|
||
|
if j == 32 {
|
||
|
return u, nil
|
||
|
}
|
||
|
err:
|
||
|
return UUID{}, errors.New("invalid UUID " + strconv.Quote(input))
|
||
|
}
|
||
|
|
||
|
// FromBytes converts a raw byte slice to an UUID. It will panic if the slice
|
||
|
// isn't exactly 16 bytes long.
|
||
|
func FromBytes(input []byte) UUID {
|
||
|
var u UUID
|
||
|
if len(input) != 16 {
|
||
|
panic("UUIDs must be exactly 16 bytes long")
|
||
|
}
|
||
|
copy(u[:], input)
|
||
|
return u
|
||
|
}
|
||
|
|
||
|
// NewRandom generates a totally random UUID (version 4) as described in
|
||
|
// RFC 4122.
|
||
|
func NewRandom() UUID {
|
||
|
var u UUID
|
||
|
io.ReadFull(rand.Reader, u[:])
|
||
|
u[6] &= 0x0F // clear version
|
||
|
u[6] |= 0x40 // set version to 4 (random uuid)
|
||
|
u[8] &= 0x3F // clear variant
|
||
|
u[8] |= 0x80 // set to IETF variant
|
||
|
return u
|
||
|
}
|
||
|
|
||
|
var timeBase = time.Date(1582, time.October, 15, 0, 0, 0, 0, time.UTC).Unix()
|
||
|
|
||
|
// NewTime generates a new time based UUID (version 1) as described in RFC
|
||
|
// 4122. This UUID contains the MAC address of the node that generated the
|
||
|
// UUID, a timestamp and a sequence number.
|
||
|
func NewTime() UUID {
|
||
|
var u UUID
|
||
|
|
||
|
now := time.Now().In(time.UTC)
|
||
|
t := uint64(now.Unix()-timeBase)*10000000 + uint64(now.Nanosecond()/100)
|
||
|
u[0], u[1], u[2], u[3] = byte(t>>24), byte(t>>16), byte(t>>8), byte(t)
|
||
|
u[4], u[5] = byte(t>>40), byte(t>>32)
|
||
|
u[6], u[7] = byte(t>>56)&0x0F, byte(t>>48)
|
||
|
|
||
|
var clockSeq [2]byte
|
||
|
io.ReadFull(rand.Reader, clockSeq[:])
|
||
|
u[8] = clockSeq[1]
|
||
|
u[9] = clockSeq[0]
|
||
|
|
||
|
copy(u[10:], hardwareAddr)
|
||
|
|
||
|
u[6] |= 0x10 // set version to 1 (time based uuid)
|
||
|
u[8] &= 0x3F // clear variant
|
||
|
u[8] |= 0x80 // set to IETF variant
|
||
|
|
||
|
return u
|
||
|
}
|
||
|
|
||
|
// String returns the UUID in it's canonical form, a 32 digit hexadecimal
|
||
|
// number in the form of xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx.
|
||
|
func (u UUID) String() string {
|
||
|
buf := [36]byte{8: '-', 13: '-', 18: '-', 23: '-'}
|
||
|
hex.Encode(buf[0:], u[0:4])
|
||
|
hex.Encode(buf[9:], u[4:6])
|
||
|
hex.Encode(buf[14:], u[6:8])
|
||
|
hex.Encode(buf[19:], u[8:10])
|
||
|
hex.Encode(buf[24:], u[10:])
|
||
|
return string(buf[:])
|
||
|
}
|
||
|
|
||
|
// Bytes returns the raw byte slice for this UUID. A UUID is always 128 bits
|
||
|
// (16 bytes) long.
|
||
|
func (u UUID) Bytes() []byte {
|
||
|
return u[:]
|
||
|
}
|
||
|
|
||
|
// Variant returns the variant of this UUID. This package will only generate
|
||
|
// UUIDs in the IETF variant.
|
||
|
func (u UUID) Variant() int {
|
||
|
x := u[8]
|
||
|
switch byte(0) {
|
||
|
case x & 0x80:
|
||
|
return VariantNCSCompat
|
||
|
case x & 0x40:
|
||
|
return VariantIETF
|
||
|
case x & 0x20:
|
||
|
return VariantMicrosoft
|
||
|
}
|
||
|
return VariantFuture
|
||
|
}
|
||
|
|
||
|
// Version extracts the version of this UUID variant. The RFC 4122 describes
|
||
|
// five kinds of UUIDs.
|
||
|
func (u UUID) Version() int {
|
||
|
return int(u[6] & 0xF0 >> 4)
|
||
|
}
|
||
|
|
||
|
// Node extracts the MAC address of the node who generated this UUID. It will
|
||
|
// return nil if the UUID is not a time based UUID (version 1).
|
||
|
func (u UUID) Node() []byte {
|
||
|
if u.Version() != 1 {
|
||
|
return nil
|
||
|
}
|
||
|
return u[10:]
|
||
|
}
|
||
|
|
||
|
// Timestamp extracts the timestamp information from a time based UUID
|
||
|
// (version 1).
|
||
|
func (u UUID) Timestamp() uint64 {
|
||
|
if u.Version() != 1 {
|
||
|
return 0
|
||
|
}
|
||
|
return uint64(u[0])<<24 + uint64(u[1])<<16 + uint64(u[2])<<8 +
|
||
|
uint64(u[3]) + uint64(u[4])<<40 + uint64(u[5])<<32 +
|
||
|
uint64(u[7])<<48 + uint64(u[6]&0x0F)<<56
|
||
|
}
|
||
|
|
||
|
// Time is like Timestamp, except that it returns a time.Time.
|
||
|
func (u UUID) Time() time.Time {
|
||
|
t := u.Timestamp()
|
||
|
if t == 0 {
|
||
|
return time.Time{}
|
||
|
}
|
||
|
sec := t / 10000000
|
||
|
nsec := t - sec
|
||
|
return time.Unix(int64(sec)+timeBase, int64(nsec))
|
||
|
}
|