num-traits/src/lib.rs

206 lines
6.0 KiB
Rust
Raw Normal View History

2016-02-03 05:36:01 +00:00
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
2014-09-16 17:35:35 +00:00
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A collection of numeric types and traits for Rust.
2014-09-16 17:35:35 +00:00
//!
//! This includes new types for big integers, rationals, and complex numbers,
//! new traits for generic programming on numeric properties like `Integer`,
//! and generic range iterators.
2014-09-16 17:35:35 +00:00
//!
//! ## Example
//!
//! This example uses the BigRational type and [Newton's method][newt] to
//! approximate a square root to arbitrary precision:
//!
//! ```
//! extern crate num;
//! # #[cfg(all(feature = "bigint", feature="rational"))]
//! # mod test {
2014-09-16 17:35:35 +00:00
//!
2015-04-03 17:26:37 +00:00
//! use num::FromPrimitive;
2014-09-16 17:35:35 +00:00
//! use num::bigint::BigInt;
//! use num::rational::{Ratio, BigRational};
//!
//! # pub
2015-01-09 11:36:03 +00:00
//! fn approx_sqrt(number: u64, iterations: usize) -> BigRational {
2014-09-16 17:35:35 +00:00
//! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap());
//! let mut approx = start.clone();
//!
2015-03-22 17:43:11 +00:00
//! for _ in 0..iterations {
//! approx = (&approx + (&start / &approx)) /
2014-09-16 17:35:35 +00:00
//! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap());
//! }
//!
//! approx
//! }
//! # }
//! # #[cfg(not(all(feature = "bigint", feature="rational")))]
//! # mod test { pub fn approx_sqrt(n: u64, _: usize) -> u64 { n } }
//! # use test::approx_sqrt;
2014-09-16 17:35:35 +00:00
//!
//! fn main() {
//! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416
//! }
//!
2014-09-16 17:35:35 +00:00
//! ```
//!
//! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
2015-11-13 02:40:13 +00:00
#![doc(html_logo_url = "http://rust-num.github.io/num/rust-logo-128x128-blk-v2.png",
html_favicon_url = "http://rust-num.github.io/num/favicon.ico",
html_root_url = "http://rust-num.github.io/num/",
2014-09-16 17:35:35 +00:00
html_playground_url = "http://play.rust-lang.org/")]
2016-03-11 00:05:40 +00:00
pub extern crate num_traits;
pub extern crate num_integer;
pub extern crate num_iter;
#[cfg(feature = "num-complex")]
pub extern crate num_complex;
2016-03-04 11:32:44 +00:00
#[cfg(feature = "num-bigint")]
2016-03-11 00:05:40 +00:00
pub extern crate num_bigint;
2016-03-04 11:32:44 +00:00
#[cfg(feature = "num-rational")]
2016-03-11 00:05:40 +00:00
pub extern crate num_rational;
2016-02-15 23:19:23 +00:00
2016-03-04 11:32:44 +00:00
#[cfg(feature = "num-bigint")]
pub use num_bigint::{BigInt, BigUint};
2016-03-04 11:32:44 +00:00
#[cfg(feature = "num-rational")]
pub use num_rational::Rational;
2016-03-04 11:32:44 +00:00
#[cfg(all(feature = "num-rational", feature="num-bigint"))]
pub use num_rational::BigRational;
2016-03-11 00:05:40 +00:00
#[cfg(feature = "num-complex")]
pub use num_complex::Complex;
pub use num_integer::Integer;
pub use num_iter::{range, range_inclusive, range_step, range_step_inclusive};
pub use num_traits::{Num, Zero, One, Signed, Unsigned, Bounded,
Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv,
PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast};
2014-09-16 17:35:35 +00:00
use std::ops::{Mul};
2016-03-04 11:32:44 +00:00
#[cfg(feature = "num-bigint")]
pub use num_bigint as bigint;
#[cfg(feature = "num-complex")]
2016-03-10 23:55:53 +00:00
pub use num_complex as complex;
2016-03-11 00:05:40 +00:00
pub use num_integer as integer;
pub use num_iter as iter;
2016-03-04 11:32:44 +00:00
pub use num_traits as traits;
#[cfg(feature = "num-rational")]
pub use num_rational as rational;
/// Returns the additive identity, `0`.
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
/// Returns the multiplicative identity, `1`.
#[inline(always)] pub fn one<T: One>() -> T { One::one() }
/// Computes the absolute value.
///
/// For `f32` and `f64`, `NaN` will be returned if the number is `NaN`
///
/// For signed integers, `::MIN` will be returned if the number is `::MIN`.
#[inline(always)]
pub fn abs<T: Signed>(value: T) -> T {
value.abs()
}
/// The positive difference of two numbers.
///
/// Returns zero if `x` is less than or equal to `y`, otherwise the difference
/// between `x` and `y` is returned.
#[inline(always)]
pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
x.abs_sub(&y)
}
/// Returns the sign of the number.
///
/// For `f32` and `f64`:
///
/// * `1.0` if the number is positive, `+0.0` or `INFINITY`
/// * `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// * `NaN` if the number is `NaN`
///
/// For signed integers:
///
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use num;
///
/// assert_eq!(num::pow(2i8, 4), 16);
/// assert_eq!(num::pow(6u8, 3), 216);
/// ```
#[inline]
2015-01-09 11:36:03 +00:00
pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
if exp == 0 { return T::one() }
while exp & 1 == 0 {
base = base.clone() * base;
exp >>= 1;
}
if exp == 1 { return base }
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = base.clone() * base;
if exp & 1 == 1 {
acc = acc * base.clone();
}
}
acc
}
2015-01-09 11:36:03 +00:00
2016-02-06 00:04:34 +00:00
/// Raises a value to the power of exp, returning `None` if an overflow occurred.
2016-02-03 05:36:01 +00:00
///
/// Otherwise same as the `pow` function.
///
/// # Example
///
/// ```rust
/// use num;
///
/// assert_eq!(num::checked_pow(2i8, 4), Some(16));
/// assert_eq!(num::checked_pow(7i8, 8), None);
/// assert_eq!(num::checked_pow(7u32, 8), Some(5_764_801));
/// ```
#[inline]
pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
if exp == 0 { return Some(T::one()) }
macro_rules! optry {
( $ expr : expr ) => {
if let Some(val) = $expr { val } else { return None }
}
}
while exp & 1 == 0 {
base = optry!(base.checked_mul(&base));
exp >>= 1;
}
if exp == 1 { return Some(base) }
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = optry!(base.checked_mul(&base));
if exp & 1 == 1 {
acc = optry!(acc.checked_mul(&base));
}
}
Some(acc)
}