Compare commits

...

531 Commits

Author SHA1 Message Date
bors[bot] 2f0cffd522
Merge #99
99: Revive Float+Real in no_std thanks to libm r=cuviper a=yoanlcq

Greetings,

This is a hopeful fix for #75.  
Basically: Add `libm` as an optional dependency, and handle three possible cases depending on which features are enabled:
- std and libm: std is used;
- std and not libm: std is used;
- libm and not std: libm and FloatCore are used.

It was briefly mentioned that `libm` wasn't ready yet, but this was months ago, and I believe it is better not to wait for too long.  
If anything, bugs in `libm` should be fixed in `libm`; `num-traits` is only delegating its implementations to it; not to mention that the more `libm` is used, the likelier issues are to be found and hopefully fixed.

Thanks in advance!

Co-authored-by: Yoan Lecoq <yoanlecoq.io@gmail.com>
Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-09-30 16:39:17 +00:00
bors[bot] 4fc3d8f72d
Merge #128
128: Fix unstable_name_collisions in Bounded for Wrapping r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-09-27 18:43:44 +00:00
Josh Stone 06b3f854d4 Fix unstable_name_collisions in Bounded for Wrapping 2019-09-27 11:07:25 -07:00
bors[bot] 5b9f6e4c47
Merge #127
127: Relax EPSILON comparisons in mul_add tests r=cuviper a=cuviper

Closes #124.

Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-09-27 18:02:41 +00:00
Josh Stone 93328dfc90 Add libm to no_std CI 2019-09-27 10:56:03 -07:00
Josh Stone c4256bd4df Don't use libm at all with std 2019-09-27 10:53:17 -07:00
Josh Stone b64ee3809c Use a single global guard in mod real 2019-09-27 10:53:17 -07:00
Josh Stone 27b9202ff3 Raise the minimum libm
Needed for some additional methods and correct overflow behavior.
2019-09-27 10:53:17 -07:00
Yoan Lecoq f050c60df9 Reference PR 99 in README 2019-09-27 10:53:17 -07:00
Yoan Lecoq 2d113f56c8 Indicate that libm feature only builds on latest Rust 2019-09-27 10:53:17 -07:00
Yoan Lecoq 63047365be CI: make the condition for testing libm the same as u128/i128 2019-09-27 10:53:17 -07:00
Yoan Lecoq 0547a355ee Run cargo fmt --all 2019-09-27 10:53:17 -07:00
Yoan Lecoq 4b1ea5fb12 Guard Real trait definition like its blanket impl for Float 2019-09-27 10:53:17 -07:00
Yoan Lecoq 1b28e6182d Add space before triple backticks 2019-09-27 10:53:17 -07:00
Yoan Lecoq 55c5b7455a CI: test with libm 2019-09-27 10:53:17 -07:00
Yoan Lecoq c28e2fe062 Real: Ignore doc tests if Float is disabled 2019-09-27 10:53:17 -07:00
Yoan Lecoq aaf3c267bd Real: Run doc-tests only if Float is enabled 2019-09-27 10:53:17 -07:00
Yoan Lecoq 849e2a0b1b Always enable Real, feature gate Float - Real forwarding 2019-09-27 10:53:17 -07:00
Yoan Lecoq 4234eb76aa libm fallback for Pow, factorize MulAdd 2019-09-27 10:53:17 -07:00
Yoan Lecoq 4d3cb0a4ba Impl MulAdd+MulAssign with libm fallback 2019-09-27 10:53:17 -07:00
Yoan Lecoq f523f532e6 Update README 2019-09-27 10:53:17 -07:00
Yoan Lecoq b4558d1c49 Make it compile on 1.8.0 2019-09-27 10:53:17 -07:00
Yoan Lecoq fec6c3610c Revive Float+Real in no_std with libm 2019-09-27 10:53:17 -07:00
bors[bot] d394467906
Merge #135
135: Debug-panic in clamp_min/max if min/max is NAN r=cuviper a=jturner314

This also improves the docs for `clamp`, `clamp_min`, and `clamp_max`.

Closes #134.

Co-authored-by: Jim Turner <git@turner.link>
2019-09-24 20:03:31 +00:00
Jim Turner 987ed8fd38 Split clamp panicking test into separate tests 2019-09-23 22:21:33 -04:00
Jim Turner d02f166765 Restrict panic testing to when std is enabled 2019-09-23 22:14:03 -04:00
Jim Turner 33b74618b6 Debug-panic in clamp_min/max if min/max is NAN
This also improves the docs for `clamp`, `clamp_min`, and `clamp_max`.
2019-09-23 20:59:34 -04:00
bors[bot] 428f89a7d5
Merge #122
122: NAN preserving clamp_lower/upper r=cuviper a=termoshtt

`NAN` preserving lower- and upper-clamp.

Cc: https://github.com/rust-ndarray/ndarray/issues/470#issuecomment-521809782

Co-authored-by: Toshiki Teramura <toshiki.teramura@gmail.com>
2019-09-14 18:23:57 +00:00
Toshiki Teramura 0e7c2a4a00 s/less/greater/g 2019-09-14 15:59:10 +09:00
bors[bot] 3add713434
Merge #132
132: Add comments explaining why transmutes are safe r=cuviper a=Shnatsel

Add comments explaining why transmutes are safe so that people auditing unsafe code don't have to spend time figuring it out by themselves.

Co-authored-by: Sergey "Shnatsel" Davidoff <sdavydov@google.com>
2019-09-09 17:42:57 +00:00
Sergey "Shnatsel" Davidoff 40898e5071
Add comments explaining why transmutes are safe 2019-09-08 15:12:21 +02:00
Toshiki Teramura 973ba72e4f Fix doc comment 2019-08-31 15:34:40 +09:00
Toshiki Teramura e7ba9b62dc Replace lower/upper to min/max 2019-08-31 15:31:30 +09:00
Toshiki Teramura 2fb8a6e8a9 Add NaN preserving test for clamp 2019-08-31 15:14:49 +09:00
Josh Stone b8906eff1b Add i586 to CI 2019-08-30 15:54:41 -07:00
Josh Stone 7a61e79757 Relax EPSILON comparisons in mul_add tests 2019-08-30 15:24:38 -07:00
bors[bot] 45067c1357
Merge #126
126: Fix num parsing for invalid multi-byte sign chars r=cuviper a=HeroicKatora

Ensure that splitting the potential sign character from the remainder
respects UTF8 boundaries. This lets invalid characters fail correctly
with an error, instead of panicking.

Closes: #125 

Co-authored-by: Andreas Molzer <andreas.molzer@gmx.de>
2019-08-30 21:26:40 +00:00
Andreas Molzer cd0da1ae5e Fix num parsing for invalid multi-byte sign chars
Ensure that splitting the potential sign character from the remainder
respects UTF8 boundaries. This lets invalid characters fail correctly
with an error, instead of panicking.
2019-08-30 22:27:32 +02:00
Toshiki Teramura f20d74fce8 Use core::f32 instead of std::f32 2019-08-17 17:58:02 +09:00
Toshiki Teramura e8dce19146 Add clamp_{lower,upper} 2019-08-17 16:45:04 +09:00
bors[bot] 58f02a8677 Merge #119
119: Doc fixes r=cuviper a=waywardmonkeys



Co-authored-by: Bruce Mitchener <bruce.mitchener@gmail.com>
2019-07-09 17:13:44 +00:00
Bruce Mitchener d1f5658bfe Typo fixes. 2019-07-09 17:50:59 +07:00
Bruce Mitchener 107a326745 Missing backticks. 2019-07-09 17:50:50 +07:00
bors[bot] 84e14d4f36 Merge #116
116: bump autocfg to fix no_std probing r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-05-22 00:47:08 +00:00
Josh Stone 2c2cfe1bf3 Release 0.2.8 2019-05-21 17:46:08 -07:00
Josh Stone a194d91625 bump autocfg to fix no_std probing 2019-05-21 17:38:28 -07:00
bors[bot] 8e765ee1ff Merge #114
114: Release 0.2.7 r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-05-20 20:21:48 +00:00
Josh Stone 6d62b6a228 Release 0.2.7 2019-05-20 13:16:20 -07:00
bors[bot] 852ec9380f Merge #113
113: Use autocfg to probe for i128 r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-05-11 00:00:41 +00:00
Josh Stone 615d83a5b6 Use autocfg to probe for i128 2019-05-10 16:42:23 -07:00
bors[bot] 38655c91c1 Merge #110
110: Check formatting in CI r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-04-16 21:39:50 +00:00
Josh Stone a1688f6991 Check formatting in CI 2019-04-16 14:32:21 -07:00
Josh Stone c38b4b601d cargo fmt 2019-04-16 14:30:46 -07:00
bors[bot] 4ab251b0a2 Merge #108
108: int: document PrimInt trait r=cuviper a=dvdhrm

This documents the PrimInt trait, explains its intentions and features
as well as mentions its origins for future reference.

Closes #11.

Co-authored-by: David Rheinsberg <david.rheinsberg@gmail.com>
2019-03-28 20:41:04 +00:00
bors[bot] 5404658360 Merge #104
104: Add inplace methods to `Zero` and `One` r=cuviper a=lcnr

Adds the following default implemented methods to `Zero` and `One`:

```rust
fn set_zero(&mut self) {
    *self = Zero::zero();
}
```

```rust
fn set_one(&mut self) {
    *self = One::one();
}
```

This allows for reuse of BigNums.


Co-authored-by: lcnr/Bastian Kauschke <bastian_kauschke@hotmail.de>
Co-authored-by: Josh Stone <cuviper@gmail.com>
2019-03-28 19:31:51 +00:00
Josh Stone 09e27abaa0 Remove a stale doc comment on `set_zero()` 2019-03-28 12:30:22 -07:00
lcnr/Bastian Kauschke 87d4dbc418 do not return &mut Self in set_one/zero 2019-03-26 17:39:11 +01:00
David Rheinsberg 398c298fa9 int: document PrimInt trait
This documents the PrimInt trait, explains its intentions and features
as well as mentions its origins for future reference.
2019-03-15 11:16:59 +01:00
bors[bot] 8915b74ae4 Merge #105
105: fix unsigned_shr docs r=cuviper a=lcnr



Co-authored-by: lcnr/Bastian Kauschke <bastian_kauschke@hotmail.de>
2019-03-07 19:06:33 +00:00
lcnr/Bastian Kauschke 9cd2422221 fix 2019-03-07 17:22:19 +01:00
lcnr/Bastian Kauschke d2a1e035ad update 2019-03-07 17:07:07 +01:00
lcnr/Bastian Kauschke 8ac6a62a6e fix unsigned_shr docs 2019-03-06 12:47:12 +01:00
lcnr/Bastian Kauschke f06893feb0 remove mem::replace 2019-03-06 12:40:05 +01:00
lcnr/Bastian Kauschke 80052795ba fix 2019-03-05 14:45:54 +01:00
lcnr/Bastian Kauschke f3869040c7 add to_zero/one to Zero/One 2019-03-05 14:34:49 +01:00
bors[bot] d668985fae Merge #92
92: exclude CI files from crates.io r=cuviper a=ignatenkobrain



Co-authored-by: Igor Gnatenko <i.gnatenko.brain@gmail.com>
2018-10-31 19:14:02 +00:00
Igor Gnatenko ff45e00849
exclude CI files from crates.io 2018-10-31 11:24:01 +01:00
bors[bot] 2925f10f40 Merge #90
90: Fix CheckedShl/CheckedShr documentation r=cuviper a=samueltardieu

Fix #57 and more:

- CheckedShl was hinting that None was returned on overflow rather than
  on too large a rhs.
- Ditto for CheckedShr.
- CheckedShr documentation erroneously indicated that a left shift was
  going to be performed instead of a right shift.

Co-authored-by: Samuel Tardieu <sam@rfc1149.net>
2018-10-09 19:23:03 +00:00
Samuel Tardieu fc4f1afdf6 Fix CheckedShl/CheckedShr documentation
Fix #57 and more:

- CheckedShl was hinting that None was returned on overflow rather than
  on too large a rhs.
- Ditto for CheckedShr.
- CheckedShr documentation erroneously indicated that a left shift was
  going to be performed instead of a right shift.
2018-10-09 11:55:18 +02:00
bors[bot] 5c24fcc4a7 Merge #83
83: Release 0.2.6 r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-09-14 03:54:59 +00:00
Josh Stone b8ad107c1c Release 0.2.6 2018-09-13 15:45:58 -07:00
bors[bot] ac7e550b00 Merge #81
81: Add wrapping shifts r=cuviper a=edmccard

Add traits `WrappingShl` and `WrappingShr` corresponding to the
standard library `wrapping_shl` and `wrapping_shr` methods. Implement
the trait on all primitive integer types as well as on `Wrapping`.

Co-authored-by: Ed McCardell <edmccard@hotmail.com>
2018-09-13 22:29:56 +00:00
Ed McCardell abb51f9a09 Add wrapping shifts
Add traits `WrappingShl` and `WrappingShr` corresponding to the
standard library `wrapping_shl` and `wrapping_shr` methods. Implement
the trait on all primitive integer types as well as on `Wrapping`.
2018-09-02 00:51:04 -04:00
bors[bot] 5985a8b750 Merge #79
79: Updated documentation to note the pow(0, 0) case. r=cuviper a=meltinglava

Ref #78 

Co-authored-by: Roald <meltinglava>
2018-08-07 23:53:03 +00:00
Roald 2b975badfa typo 2018-08-07 12:56:16 +02:00
Roald 0f228be4d5 Updated documentation to note the pow(0, 0) case. 2018-07-21 22:23:13 +02:00
bors[bot] a415e2a751 Merge #74
74: Run cargo fmt r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-07-13 00:31:20 +00:00
Josh Stone d2bf4e04e4 Run cargo fmt 2018-07-12 17:09:22 -07:00
Josh Stone 83841d15f8 Add dates to RELEASES.md 2018-06-21 12:07:31 -07:00
bors[bot] e796afc83a Merge #73
73: Avoid `as` casts in default FromPrimitive methods r=cuviper a=cuviper

Particularly, the default `from_f64` used `n as i64`, which has
undefined behavior on overflow, kind of defeating the purpose here.
Now we use a checked `to_i64()` for this, and even try `to_u64()` as a
fallback for completeness.

Also make similar changes to default `ToPrimitive`, but at least it
didn't have the same casting problem.

Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-06-20 21:26:19 +00:00
Josh Stone 714057979e Release 0.2.5 2018-06-20 14:24:56 -07:00
Josh Stone 60924ecc70 add test newtype_to_primitive 2018-06-20 13:49:57 -07:00
Josh Stone 21e3620999 doc: fix a typo, s/the/then/ 2018-06-20 13:39:08 -07:00
Josh Stone dd7900d62f Avoid closures in default `ToPrimitive` methods
In `to_f64()`, we also try `to_u64()` if `to_i64()` failed.
2018-06-20 13:10:41 -07:00
Josh Stone d968efbc76 Avoid `as` casts in default FromPrimitive methods
Particularly, the default `from_f64` used `n as i64`, which has
undefined behavior on overflow, kind of defeating the purpose here.
Now we use a checked `to_i64()` for this, and even try `to_u64()` as a
fallback for completeness.

(All of the primitive implementations already do better, at least.)
2018-06-20 13:05:03 -07:00
bors[bot] 15dc0e7127 Merge #70
70: Clarify in the docs that `mul_add` is not always faster. r=cuviper a=frewsxcv

More info:

- https://github.com/rust-lang/rust/issues/49842
- https://github.com/rust-lang/rust/pull/50572

Co-authored-by: Corey Farwell <coreyf@rwell.org>
2018-05-21 17:07:28 +00:00
Corey Farwell 4775dee66b Clarify in the docs that `mul_add` is not always faster.
More info:

- https://github.com/rust-lang/rust/issues/49842
- https://github.com/rust-lang/rust/pull/50572
2018-05-20 11:58:10 -04:00
bors[bot] f4125621ac Merge #69
69: Automatically detect support for i128/u128 r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-05-11 23:02:02 +00:00
Josh Stone c00ae2046e Release 0.2.4 2018-05-11 16:01:25 -07:00
Josh Stone 51f6c57c4b Automatically detect support for i128/u128 2018-05-11 15:50:48 -07:00
bors[bot] 4e136ddc85 Merge #68
68: Release 0.2.3 r=cuviper a=cuviper

Closes #66.

Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-05-10 19:22:07 +00:00
Josh Stone 4a03db4e1c Release 0.2.3 2018-05-10 12:15:53 -07:00
bors[bot] c3feb40897 Merge #67
67: Miscellaneous tweaks regarding no_std r=cuviper a=cuviper



Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-05-09 00:40:06 +00:00
Josh Stone 7e055b131f Document more impls that require std 2018-05-08 17:35:59 -07:00
Josh Stone 5add4c580e Enable all features for docs.rs 2018-05-08 17:27:44 -07:00
Josh Stone 817ef94784 Add the no-std crate category 2018-05-08 17:27:33 -07:00
Josh Stone f35cce229e Always use #![no_std], and declare std when enabled 2018-05-08 17:26:38 -07:00
bors[bot] 6edb91f5e8 Merge #60
60: i128 r=cuviper a=regexident



Co-authored-by: Vincent Esche <regexident@gmail.com>
Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-05-08 21:43:10 +00:00
Josh Stone 1af2319201 add a couple more Rust versions to CI 2018-05-07 12:38:56 -07:00
Josh Stone bbbc2bd1d7 impl 128-bit numeric casts
This includes new conditional methods `ToPrimitive::{to_i128,to_u128}`
and `FromPrimitive::{from_i128,from_u128}`.  Since features can only be
additive, these methods must not cause a breaking change to anyone when
enabled -- thus they have a default implementation that converts through
64-bit values.  Types that can do better with a full 128-bit integer,
like bigint or floating-point, will probably want to override these.
2018-05-07 12:28:53 -07:00
Josh Stone 6161f1ade1 impl 128-bit MulAdd and MulAddAssign 2018-05-07 12:28:35 -07:00
Josh Stone fe53805550 impl 128-bit CheckedRem and CheckedNeg 2018-05-07 12:28:15 -07:00
Josh Stone 428e0107d2 Add imports for 128-bit Bounded 2018-05-07 12:27:42 -07:00
Josh Stone d2107ae005 There's no u64 exponent impl for i128/u128 Pow 2018-05-07 12:26:44 -07:00
Josh Stone 08ad9b1642 i128 is not Unsigned 2018-05-07 12:26:00 -07:00
Josh Stone 261efafe0b Merge branch 'master' into regexident-i128 2018-05-04 12:28:48 -07:00
bors[bot] dd67e9d2e1 Merge #61
61: Use constant for 180/π in f32::to_degrees r=cuviper a=vks

The current `f32::to_degrees` implementation uses a division to
calculate 180/π, which causes a loss of precision. Using a constant is
still not perfect (implementing a maximally-precise algorithm would come
with a high performance cost), but improves precision with a minimal
change.

This is a backport from [`std`].

[`std`]: e34c31bf02

Co-authored-by: Vinzent Steinberg <vinzent.steinberg@gmail.com>
Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-05-04 19:26:46 +00:00
Josh Stone 6aaff332d3 Explicitly test FloatCore in to_degrees_rounding 2018-05-04 12:19:23 -07:00
bors[bot] a49013e338 Merge #59
59: Added `MulAdd` and `MulAddAssign` traits r=cuviper a=regexident

Both `f32` and `f64` implement fused multiply-add, which computes `(self * a) + b` with only one rounding error. This produces a more accurate result with better performance than a separate multiplication operation followed by an add:

```rust
fn mul_add(self, a: f32, b: f32) -> f32[src]
```

It is however not possible to make use of this in a generic context by abstracting over a trait.

My concrete use-case is machine learning, [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent) to be specific,  
where the core operation of updating the gradient could make use of `mul_add` for both its `weights: Vector` as well as its `bias: f32`:

```rust
struct Perceptron {
  weights: Vector,
  bias: f32,
}

impl MulAdd<f32, Self> for Vector {
  // ...
}

impl Perceptron {
  fn learn(&mut self, example: Vector, expected: f32, learning_rate: f32) {
    let alpha = self.error(example, expected, learning_rate);
    self.weights = example.mul_add(alpha, self.weights);
    self.bias = self.bias.mul_add(alpha, self.bias)
  }
}
```

(The actual impl of `Vector` would be generic over its value type: `Vector<T>`, thus requiring the trait.)

Co-authored-by: Vincent Esche <regexident@gmail.com>
Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-05-04 19:12:41 +00:00
Josh Stone 0d358034d9 Test MulAdd explicitly, guarded by std for floats 2018-05-04 12:09:02 -07:00
Vincent Esche 157efc5a26 Adjusted CI testing scripts 2018-04-19 09:26:02 +02:00
Vincent Esche 28be885481 Moved impl of `MulAdd`/`MulAddAssign` for `f32`/`f64` behind feature guard 2018-04-18 10:31:37 +02:00
Vincent Esche 257917f3f2 Removed inferrable value suffixes 2018-04-18 10:19:30 +02:00
Josh Stone 4fb749a401 typo: taht -> that 2018-04-13 14:29:00 -07:00
bors[bot] 4195043240 Merge #63
63: Add CheckedRem and CheckedNeg r=cuviper a=LEXUGE

Continue from #58 
I've alreadyremoved all the formats.


Co-authored-by: LEXUGE <lexugeyky@outlook.com>
Co-authored-by: Josh Stone <cuviper@gmail.com>
2018-04-13 21:25:30 +00:00
Josh Stone aa21fba9fc re-export CheckedRem and CheckedNeg at the root 2018-04-13 14:14:49 -07:00
Josh Stone b1c4074cc4 Document CheckedRem and CheckedNeg 2018-04-13 14:14:22 -07:00
Josh Stone 5fb3724b69 rename checked_impl_one_param to checked_impl_unary 2018-04-13 14:13:42 -07:00
LEXUGE f74de249c8
remove formats 2018-04-13 16:04:56 +08:00
Vinzent Steinberg 9ca219c677 Avoid test failure with Rust 1.8 by limiting to no-std builds 2018-04-10 19:56:39 +02:00
bors[bot] 97f3892bd1 Merge #62
62: Update outdated FIXME r=cuviper a=vks



Co-authored-by: Vinzent Steinberg <vinzent.steinberg@gmail.com>
2018-04-10 17:54:20 +00:00
Vinzent Steinberg 2836cfc9ab Update outdated FIXME 2018-04-10 19:51:03 +02:00
Vinzent Steinberg 6430351e74 Use constant for 180/π in f32::to_degrees
The current `f32::to_degrees` implementation uses a division to
calculate 180/π, which causes a loss of precision. Using a constant is
still not perfect (implementing a maximally-precise algorithm would come
with a high performance cost), but improves precision with a minimal
change.

This is a backport from [`std`].

[`std`]: e34c31bf02
2018-04-10 15:26:14 +02:00
Vincent Esche dd5b107c56 Added mention of `i128` feature to ‘README.md’ 2018-04-10 10:42:35 +02:00
Vincent Esche 746db74dac Added impls of `Unsigned` for `i128` and `u128` 2018-04-10 10:39:57 +02:00
Vincent Esche 152b38e03f Added impls of `Num` for `i128` and `u128` 2018-04-10 10:39:54 +02:00
Vincent Esche 6d3b55030f Added ‘i128’ feature and unit test invocation 2018-04-10 10:35:55 +02:00
Vincent Esche 830363024b Added `MulAdd` and `MulAddAssign` traits 2018-04-10 10:08:55 +02:00
Vincent Esche d1334bf903 Added impls of `Signed` for `i128` and `u128` 2018-04-09 12:58:17 +02:00
Vincent Esche f69af180cc Added impls of `Pow` for `i128` and `u128` 2018-04-09 11:11:15 +02:00
Vincent Esche 5ee2570618 Added impls of `Wrapping…` for `i128` and `u128` 2018-04-09 11:11:05 +02:00
Vincent Esche 234706fb97 Added impls of `Saturating…` for `i128` and `u128` 2018-04-09 11:10:57 +02:00
Vincent Esche b44666183d Added impls of `Checked…` for `i128` and `u128` 2018-04-09 11:10:51 +02:00
Vincent Esche bc19c34934 Added impls of `PrimInt` for `i128` and `u128` 2018-04-09 11:10:45 +02:00
Vincent Esche 62723f6f3a Added impls of `Zero` and `One` for `i128` and `u128` 2018-04-09 11:10:36 +02:00
Vincent Esche f8d1896c6c Added impls of `Bounded` for `i128` and `u128` 2018-04-09 11:10:23 +02:00
bors[bot] bb67a3d03a Merge #53
53: Release 0.2.2 r=cuviper a=cuviper
2018-03-18 23:32:18 +00:00
Josh Stone 058a6004f0 Release 0.2.2 2018-03-18 16:27:31 -07:00
bors[bot] fcc33a3577 Merge #52
52: Refactor ToPrimitive range checks r=cuviper a=cuviper

This is a rebase and continuation of PR #28.  The primary benefit is that
floats finally check for overflow before casting to integers, avoiding
undefined behavior.  Fixes #12.

The inter-integer conversions and all of the macros for these have also been
tweaked, hopefully improving readability.  Exhaustive tests have been added for
good and bad conversions around the target MIN and MAX values.
2018-03-13 21:10:04 +00:00
Josh Stone a4d234c253 Further simplify float-to-int range checks
We don't actually need to compute the `trunc()` value, as long as we can
figure out the right values for the exclusive range `(MIN-1, MAX+1)` to
measure the same truncation effect.
2018-03-13 13:38:17 -07:00
Josh Stone f0ed42b3bc Test edge cases of ToPrimitive with ints 2018-03-11 01:37:27 -08:00
Josh Stone 50868c60d2 Refactor to_primitive_int/uint macros 2018-03-11 01:37:00 -08:00
Josh Stone 6d7bbb1b53 Mask debug prints no-std mode 2018-03-11 01:36:17 -08:00
Josh Stone d195eafbe2 Simplify the to_primitive_float macros 2018-03-10 23:33:47 -08:00
Josh Stone f6dc4d29a4 Add thorough tests of float to int edge cases 2018-03-10 23:05:02 -08:00
Josh Stone b025c273c7 Rewrite range checks in float ToPrimitive macros 2018-03-10 23:01:30 -08:00
Dan Barella 8e27c7327d Rename some tests. 2018-03-10 15:14:23 -08:00
Dan Barella aab7098acd Reformat macros. 2018-03-10 15:14:23 -08:00
Alexander Popiak c32cb5c65b Patch in apopiak@'s changes from github.com/rust-num/num/pull/135/. 2018-03-10 15:14:23 -08:00
Dan Barella ab8fda7654 Change assert form. 2018-03-10 15:14:23 -08:00
Dan Barella ecb0816c83 Remove an unneeded assert. 2018-03-10 15:14:23 -08:00
Dan Barella 3534a89858 Don't use assert_ne!
`num` is tested against `rust 1.8.0`, which doesn't include
`assert_ne!` -- so we use a plain ol' `assert` instead.
2018-03-10 15:14:23 -08:00
Dan Barella f99aa0e181 Check overflow when casting floats to integers.
This change adds some new macro rules used when converting from floats
to integers. There are two macro rule variants, one for signed ints, one
for unsigned ints.

Among other things, this change specifically addresses the overflow case
documented in https://github.com/rust-num/num-traits/issues/12
2018-03-10 15:14:23 -08:00
bors[bot] aa36cdb206 Merge #42
42: Release 0.2.1 r=cuviper a=cuviper
2018-03-01 23:29:38 +00:00
Josh Stone ab0de9c329 Release 0.2.1 2018-03-01 14:20:57 -08:00
bors[bot] 5f906234bc Merge #41
41: Various improvements to FloatCore r=vks a=cuviper

- New macros simplify forwarding method implementations.
  - `Float` and `Real` use this to compact their implementations.
  - `FloatCore` now forwards `std` implementations when possible.
- `FloatCore` now requires `NumCast`, like `Float does.
- New additions to `FloatCore`:
  - Constants like `min_value()` -> `f64::MIN`
  - Rounding methods `floor`, `ceil`, `round`, `trunc`, `fract`
  - `integer_decode` matching `Float`'s
- Fix NAN sign handling in `FloatCore` (rust-num/num#312, rust-lang/rust#42425)
- Fix overflow in `FloatCore::powi` exponent negation.
- Add doctests to all `FloatCore` methods.
2018-03-01 20:57:29 +00:00
Josh Stone 04a3f2a591 Comment the Rust version for NAN.is_sign_* behavior 2018-02-28 11:43:55 -08:00
Josh Stone 080f6f259e Comment the i32::MIN case for FloatCore::powi 2018-02-28 11:33:34 -08:00
Josh Stone aa9ceba628 Add doctests to FloatCore 2018-02-27 22:12:37 -08:00
Josh Stone ec3cd50f3d Weaken the std f32::to_degrees/to_radians tests 2018-02-27 22:10:46 -08:00
Josh Stone ac6eca4b66 Use more FloatCore in src/sign.rs 2018-02-27 21:50:44 -08:00
Josh Stone 36c7e324db Fix FloatCore::powi with i32::MIN exponent 2018-02-27 21:34:01 -08:00
Josh Stone 964a7e52a8 Reinstate NAN-sign fixes in FloatCore
Formerly changed on the next branch, part of rust-num/num#319.
2018-02-27 21:03:30 -08:00
Josh Stone 8d16921579 allow unused macros 2018-02-27 17:09:43 -08:00
Josh Stone 6fa29be7c0 Use macros for more float constants 2018-02-27 17:09:43 -08:00
Josh Stone 83d498d0be Add integer_decode to FloatCore 2018-02-27 16:33:04 -08:00
Josh Stone f365a4205f Add rounding methods to FloatCore 2018-02-27 16:33:04 -08:00
Josh Stone 99c6cc11ba Add more constants to FloatCore 2018-02-27 16:33:04 -08:00
Josh Stone 7d6575da0f Add NumCast to FloatCore, matching Float 2018-02-27 16:33:04 -08:00
Josh Stone ac503261ca Forward FloatCore to inherent methods when possible 2018-02-27 16:33:04 -08:00
Josh Stone c848562fcf Use forwarding macros to implement Float and Real 2018-02-27 16:33:04 -08:00
bors[bot] dc6a125a9c Merge #37
37: Add Inv and Pow traits. r=cuviper a=clarcharr

This is not a breaking change, and closes #34 and #38.

This doesn't add any impls for the other `num` crates, just floats with `std` enabled. The trait has to be added before those other crates can be updated.
2018-02-27 19:56:30 +00:00
Clar Charr 79b557f040 Ensure infalliability of conversions, avoid closures. 2018-02-27 14:06:46 -05:00
Clar Charr aca8dc8149 Remove Pow<u64> (accidentally added). 2018-02-27 13:25:53 -05:00
Clar Charr 61a6acc9c2 Add more Pow implementations. 2018-02-27 13:25:53 -05:00
Clar Charr 5d6933f34a Fix doc tests. 2018-02-27 13:25:53 -05:00
Clar Charr ce3badca57 Move Pow to pow module. 2018-02-27 13:25:53 -05:00
Clar Charr c1f4118b4e Fix Inv trait, add Pow trait. 2018-02-27 13:25:53 -05:00
Clar Charr 5bdff3f0ff Add Inv trait. 2018-02-27 13:25:53 -05:00
bors[bot] 3431da80a2 Merge #39
39: Add is_one. r=cuviper a=clarcharr

Implements the version recommended in #5. That issue should remain open to track the breaking-change version.
2018-02-23 22:58:39 +00:00
Clar Charr 51dad501aa Add #[inline] to is_one. 2018-02-23 17:44:07 -05:00
Clar Charr 45856ee846 Make doc comment less scary. 2018-02-23 17:21:47 -05:00
Clar Charr 9461cd84f2 Add is_one. 2018-02-19 15:05:11 -05:00
bors[bot] bfd62d4638 Merge #32
32: Implement CoreFloat trait r=cuviper a=vks

This is a subset of the `Float` trait, but works with `no_std`.
Some code was simplified by using `CoreFloat`.
2018-02-07 22:26:47 +00:00
Vinzent Steinberg 52bc8eb22b Mention FloatCore in README 2018-02-07 12:47:12 +01:00
Vinzent Steinberg d115dadeb1 Don't re-export FloatCore
This avoids breaking `use num_traits::*`.
2018-02-07 12:42:30 +01:00
Vinzent Steinberg 1db660ed56 Inline only actual trait implementations 2018-02-07 12:38:01 +01:00
Vinzent Steinberg efad5329b4 Rename CoreFloat to FloatCore 2018-02-07 12:34:14 +01:00
Josh Stone a062bed8b2 link more release notes 2018-02-06 20:49:17 -08:00
bors[bot] 17cc9c1e75 Merge #33
33: Release 0.2.0 r=cuviper a=cuviper
2018-02-07 01:12:45 +00:00
Josh Stone 2566d53ad2 Bump to 0.2.0 final 2018-02-06 17:01:43 -08:00
Josh Stone aa9ea42f9e Add release notes for 0.2.0 2018-02-06 17:01:31 -08:00
Vinzent Steinberg 8a7f383eb1 Implement CoreFloat trait
This is a subset of the `Float` trait, but works with `no_std`.
Some code was simplified by using `CoreFloat`.
2018-02-02 19:48:25 +01:00
Josh Stone 47515a10e1 Add a min-rustc badge and document compatibility 2018-02-02 10:24:14 -08:00
bors[bot] afa81f80e4 Merge #30
30: Re-introduce the std feature r=vks a=cuviper

This is a port of @vks's rust-num/num#296, but without the feature-toggled changes to `Float`.  Now `Float` and the newer `Real` are completely dependent on having `std` enabled.  In the future we can consider adding separate more-limited float/real traits that can work without `std`, like the `BaseFloat` that was originally proposed in the former PR.

This is a breaking change with a bump to 0.2, since anyone currently using `default-features = false` will lose functionality.  The actual API is otherwise unchanged, so my plan is to employ the "semver trick" -- publishing a new num-traits-0.1 that re-exports everything from 0.2 (with `std`).  Thus all `num-traits` users should remain compatible even if they mix 0.1 and 0.2.

Closes #16.
2018-02-02 17:53:01 +00:00
Toshiki Teramura ffa67c8527 CI typo fix 2018-02-01 11:56:13 -08:00
Josh Stone 67f03391a1 Bump to 0.2 for the breaking feature change 2018-01-31 16:19:00 -08:00
Josh Stone 36b2514f4b Note the std feature in README.md 2018-01-31 16:16:41 -08:00
Josh Stone 4fbc583eb9 Don't use wildcards for pub use 2018-01-31 16:05:43 -08:00
Josh Stone 79786ac518 test no_std in CI 2018-01-31 15:56:25 -08:00
Josh Stone e6bb97b3ac Make `Float` and `Real` depend on the `std` feature
We don't have implementations for many of the methods in `no_std`.  It's
hostile to external implementors if some trait methods are conditional
on a feature, as that feature could be added by anyone in a dependency
tree.  Instead, let's just live without these traits for now.
2018-01-31 15:56:06 -08:00
Vinzent Steinberg a843027b56 Re-introduce the std feature
This is a port of @vks's rust-num/num#296, but without the feature-
toggled changes to `Float`.
2018-01-31 15:42:55 -08:00
bors[bot] 3716330128 Merge #27
27: Release num-traits 0.1.42 r=cuviper a=cuviper
2018-01-23 02:12:39 +00:00
Josh Stone ff73e62d93 Release num-traits 0.1.42 2018-01-22 18:06:22 -08:00
bors[bot] 93be5dbff2 Merge #23
23: Add RealNum trait for real data types (Float, but without floating-point specific features) r=cuviper a=yoanlcq

This is supposed to fix [#19](https://github.com/rust-num/num-traits/issues/19); I assumed going ahead would be better than bumping the thread.  

In any case, I understand that it is a quite significant addition and won't mind too much if it doesn't make it.

This adds a new `RealNum` trait, along with a universal impl `impl<T: Float> RealNum for T { ... }`.  
Therefore, this shouldn't be a breaking change, except in places where both traits are imported (which obviously only happened in a few places in this crate).

The intent is that generic code may prefer to use `RealNum` instead of `Float` when floating-point isn't a requirement. In the future (next major version ?), I guess `Float` could be made to only provide floating-point-specific features on top of `RealNum`.

Most of the code+doc was copy-pasted from `Float`, but the doc comments should be up-to-date with the situation; `Float` only makes an appearance when talking about NaN and infinity.

Issues I've seen : 
- `RealNum` might not be the name we want;
- I've mentioned that `sqrt()` is allowed to panic if the input is negative and has no meaningful NaN representation;
- Should we do that too for e.g `log()` ? Like `sqrt()`, it's supposed to return Nan when `x < 0`.

Thanks for your time. :)
2018-01-19 01:39:13 +00:00
Yoan Lecoq 1e892e2238 Remove legacy default implementations 2018-01-18 21:32:46 +01:00
Yoan Lecoq a2337f392b Document panic cases where T doesn't support NaN 2018-01-18 08:44:05 +01:00
bors[bot] aa7c15e0e9 Merge #17 #21
17: Add AsPrimitive trait for generic casting with `as` r=cuviper a=Enet4

This is my personal attempt at #7. It is fairly similar to what can be found in `asprim`, although implemented from scratch. Please let me know of what you think. Could it use more tests? Should I also leave a safety notice that some conversions with `as` are currently UB (rust-lang/rust#10184)? 


21: Add checked shifts r=cuviper a=fabianschuiki

Add traits `CheckedShl` and `CheckedShr` that correspond to the standard
library's `checked_shl` and `checked_shr` functions. Implement the trait
on all primitive integer types by default, akin to what the standard
library does.

The stdlib is somewhat inconsistent when it comes to the type of the
shift amount. The `checked_*` functions have a `u32` shift amount, but
the `std::ops::{Shl,Shr}` traits are generic over the shift amount. Also
the stdlib implements these traits for all primitive integer types as
right-hand sides. Our implementation mimics this behaviour.
2018-01-18 05:37:47 +00:00
Eduardo Pinho 31218add95 Include note for implementers of AsPrimitive 2018-01-14 21:23:19 +00:00
Fabian Schuiki 809ccff63f Fix checked shift RHS to u32, drop from PrimInt
Make the checked left and right shifts take a `u32` as right-hand side,
which is more consistent with the other checked operations. Also drop
`CheckedShl` and `CheckedShr` from the `PrimInt` trait, to not break
existing code. Add doctests for the two traits.
2018-01-13 15:02:38 +01:00
bors[bot] 9c8676e6d5 Merge #22
22: Implement std::fmt::Display for ParseFloatError r=cuviper a=svartalf

Basically it is a copy of the stdlib implementation, should close #2
2018-01-13 05:27:49 +00:00
Yoan Lecoq ddd664ae2b RealNum -> Real 2018-01-06 15:51:10 +01:00
Yoan Lecoq 52c87dd410 Remove 2018-01-05 10:01:29 +01:00
Yoan Lecoq 5a6997c1c8 Add RealNum trait 2018-01-05 09:06:23 +01:00
svartalf 53ab360d94 std::fmt::Display implemented for ParseFloatError 2018-01-04 16:46:02 +03:00
Fabian Schuiki 21dfae004c Add checked shifts
Add traits `CheckedShl` and `CheckedShr` that correspond to the standard
library's `checked_shl` and `checked_shr` functions. Implement the trait
on all primitive integer types by default, akin to what the standard
library does.

The stdlib is somewhat inconsistent when it comes to the type of the
shift amount. The `checked_*` functions have a `u32` shift amount, but
the `std::ops::{Shl,Shr}` traits are generic over the shift amount. Also
the stdlib implements these traits for all primitive integer types as
right-hand sides. Our implementation mimics this behaviour.
2018-01-03 16:25:13 +01:00
Eduardo Pinho af693fef48 Add safety notice in AsPrimitive docs 2017-12-21 21:03:25 +00:00
Eduardo Pinho 773a222237 Add conversions from `bool` in `AsPrimitive` 2017-12-20 21:41:45 +00:00
Eduardo Pinho 741e1f4e09 Add AsPrimitive trait, impls and tests 2017-12-20 00:05:36 +00:00
Josh Stone 42a610d323 Move num-traits to its own repo
All the prior `num` history is kept, so old `num-traits` tags are still
valid, but future development here will be just for `num-traits`.
2017-12-18 17:35:41 -08:00
bors[bot] f172ef3a6b Merge #350
350: Avoid large intermediate product in LCM r=cuviper a=mhogrefe

Changed the implementation of BigUint LCM from
`((self * other) / self.gcd(other))`
to
`self / self.gcd(other) * other`

The division is exact in both cases, so the result is the same, but the new code avoids the potentially-large intermediate product, speeding things up and using less memory.

I also removed the unnecessary parentheses, because I think it's clear what order everything will be executed in. But if others think differently I can add them back.
2017-12-14 08:07:15 +00:00
bors[bot] a0c431e270 Merge #351
351: Remove num-macros r=cuviper a=cuviper

The first commit gives a final deprecation bump to `num-macros`, and
the second removes it from the repo altogether.
2017-12-14 07:54:24 +00:00
Josh Stone d90ae0ae8b Remove num-macros 2017-12-13 23:44:49 -08:00
Josh Stone bd1701ded4 macros: bump to 0.1.40, deprecated 2017-12-13 23:41:50 -08:00
Mikhail Hogrefe 56a029b20f Avoid large intermediate product in LCM 2017-12-13 21:13:57 -05:00
Josh Stone c24f76781b num: bump to 0.1.41
Syncing the metacrate to the latest of all subcrates.
2017-12-01 13:31:33 -08:00
Josh Stone 98cb815183 bigint: bump to 0.1.41
- Now uses Toom-3 multiplication for large inputs.
- `BigInt`/`BigUint` parsing now accepts `_` separating digits.
- `BigInt`/`BigUint::assign_from_slice` reinitializes the value, keeping
  the same internal buffer.
- `BigUint` now implements many `*Assign` ops.
- `BigUint::modpow(exp, mod)` performs efficient modular exponentiation.
2017-12-01 13:15:22 -08:00
Josh Stone 18b48f335e complex: bump to 0.1.41
`Complex` now implements `Num`, `Rem`, and `RemAssign`.

(Complex remainders don't have a clear mathematical basis, but we choose
to round toward zero to a gaussian integer.)
2017-12-01 13:02:13 -08:00
Josh Stone 0e1c4c8b65 traits: bump to 0.1.41
minor warning fixes
2017-12-01 12:54:48 -08:00
bors[bot] 0e31f3c6b3 Merge #345
345: Downgrade libc for Rust 1.8 CI r=cuviper a=cuviper
2017-12-01 01:30:41 +00:00
Josh Stone a7464b2b42 Roll back libc in the ci scripts too 2017-11-30 17:01:09 -08:00
Josh Stone d354559365 Downgrade libc for Rust 1.8 CI 2017-11-30 16:15:45 -08:00
Josh Stone cc3be86781 rational: bump to 0.1.40 2017-11-08 14:40:10 -08:00
bors[bot] ca7e438d77 Merge #342
342: rational: check for NaN when approximating floats r=cuviper a=cuviper

We had a test for NaN already, but thanks to undefined casts (#119) it
was only passing by luck -- on armv7hl it failed:

https://bugzilla.redhat.com/show_bug.cgi?id=1511187

Now we check for NaN explicitly.
2017-11-08 22:29:38 +00:00
Josh Stone b67f1bd6d6 rational: check for NaN when approximating floats
We had a test for NaN already, but thanks to undefined casts (#119) it
was only passing by luck -- on armv7hl it failed:

     https://bugzilla.redhat.com/show_bug.cgi?id=1511187

Now we check for NaN explicitly.
2017-11-08 14:09:05 -08:00
bors[bot] a203e9f9fc Merge #339
339: Implement modpow() for BigUint backed by Montgomery Multiplication r=cuviper a=str4d

Based on this Gist: https://gist.github.com/yshui/027eecdf95248ea69606

Also adds support to `BigUint.from_str_radix()` for using `_` as a visual separator.

Closes #136
2017-11-02 19:37:52 +00:00
Josh Stone ed10d617b5 bigint: Add a modpow fallback for even modulus 2017-10-22 16:44:05 -07:00
Josh Stone 35b7187e83 bigint::monty: use infallible conversions in tests 2017-10-22 15:49:51 -07:00
Josh Stone bb0c9324b2 bigint::monty: deduplicate mr.n and mr.p 2017-10-22 15:45:01 -07:00
Josh Stone b380880ed3 bigint::monty: simplify modpow zero test 2017-10-22 15:38:50 -07:00
Josh Stone 96c4a26624 bigint::monty: simplify modpow parameter init 2017-10-22 15:37:48 -07:00
Josh Stone 7fa27b6007 bigint::monty: simplify redc return value 2017-10-22 15:36:33 -07:00
Josh Stone 5708db0f67 bigint::monty: simplify redc masks 2017-10-22 15:34:46 -07:00
Josh Stone 5a0de140c9 bigint::monty: use mac_digit 2017-10-22 15:30:17 -07:00
Josh Stone 4d35815426 bigint::monty: simplify work space allocation 2017-10-22 15:28:59 -07:00
Josh Stone aea5f85216 bigint::monty: store the inverse as u32 2017-10-22 15:15:02 -07:00
Josh Stone c2fba06787 bigint: less pub in monty 2017-10-22 15:05:16 -07:00
Josh Stone 2a1fe6e7ef bigint: fix parsing leading _ and test more 2017-10-22 14:57:52 -07:00
bors[bot] fc39e1beaa Merge #340
340: Fix documentation formatting with commonmark enabled r=cuviper a=mbrubeck

This makes formatting correct with the new pulldown-cmark Markdown parser (rust-lang/rust#44229).
2017-10-22 21:12:28 +00:00
Matt Brubeck 531c2a754f Fix documentation formatting with commonmark enabled
This makes formatting correct with the new pulldown-cmark Markdown
parser (rust-lang/rust#44229).
2017-10-17 10:16:01 -07:00
str4d 720893f67b
Add support to BigUint.from_str_radix() for using _ as a visual separator 2017-10-09 16:11:18 +01:00
str4d f523b9c359
Implement modpow() for BigUint backed by Montgomery Multiplication
Based on this Gist: https://gist.github.com/yshui/027eecdf95248ea69606

Closes #136
2017-10-09 16:09:49 +01:00
bors[bot] 741a5a6207 Merge #335
335: Clean up some warnings r=cuviper a=cuviper
2017-09-22 00:38:06 +00:00
Josh Stone 2f8f952d1d clean up unused macros 2017-09-21 17:36:21 -07:00
Josh Stone 2a9750ada4 bigint: remove an unused mut 2017-09-21 17:28:37 -07:00
Josh Stone 7679cb86fb Remove `#[must_use]` on `__add2`
It doesn't actually work on functions yet, and nightly now warns that it
is experimental, behind `#[feature(fn_must_use)]`.
2017-09-21 17:26:20 -07:00
bors[bot] 4896746fec Merge #328
328: Optimizing BigUint and Bigint multiplication with the Toom-3 algorithm r=cuviper a=kompass

Hi !

I finally implemented the Toom-3 algorithm ! I first tried to minimize the memory allocations by allocating the `Vec<BigDigit>` myself, as was done for Toom-2, but Toom-3 needs more complex calculations, with negative numbers. So I gave up this method, to use `BigInt` directly, and it's already faster ! I also chose a better threshold for the Toom-2 algorithm.

Before any modification :
```
running 4 tests
test multiply_0        ... bench:         257 ns/iter (+/- 25)
test multiply_1        ... bench:      30,240 ns/iter (+/- 1,651)
test multiply_2        ... bench:   2,752,360 ns/iter (+/- 52,102)
test multiply_3        ... bench:  11,618,575 ns/iter (+/- 266,286)
```

With a better Toom-2 threshold (16 instead of 4) :
```
running 4 tests
test multiply_0        ... bench:         130 ns/iter (+/- 8)
test multiply_1        ... bench:      19,772 ns/iter (+/- 1,083)
test multiply_2        ... bench:   1,340,644 ns/iter (+/- 17,987)
test multiply_3        ... bench:   7,302,854 ns/iter (+/- 82,060)
```

With the Toom-3 algorithm (with a threshold of 300):
```
running 4 tests
test multiply_0        ... bench:         123 ns/iter (+/- 3)
test multiply_1        ... bench:      19,689 ns/iter (+/- 837)
test multiply_2        ... bench:   1,189,589 ns/iter (+/- 29,101)
test multiply_3        ... bench:   3,014,225 ns/iter (+/- 61,222)
```

I think this could be optimized, but it's a first step !
2017-09-20 20:53:40 +00:00
Josh Stone 1ddbee7f37 bigint mac3: tweak thresholds between algorithms
It's not too rigorous, but thresholds 32 and 256 give me better results.

Before:

     test multiply_0        ... bench:          87 ns/iter (+/- 0)
     test multiply_1        ... bench:      11,926 ns/iter (+/- 19)
     test multiply_2        ... bench:     772,178 ns/iter (+/- 3,068)
     test multiply_3        ... bench:   2,034,237 ns/iter (+/- 9,618)

After:

     test multiply_0        ... bench:          87 ns/iter (+/- 0)
     test multiply_1        ... bench:      11,927 ns/iter (+/- 64)
     test multiply_2        ... bench:     672,440 ns/iter (+/- 3,570)
     test multiply_3        ... bench:   1,577,065 ns/iter (+/- 11,137)
2017-09-20 13:19:00 -07:00
Josh Stone 28d84ca3ac Toom-3: operate more on values where possible 2017-09-20 13:17:06 -07:00
Josh Stone 2c2e46c8df Add comments about multiplication strategy 2017-09-20 13:15:44 -07:00
Josh Stone 05dc87c041 Improve mac_digit bounds checking
By starting with `split_at_mut`, the hot multiplication loop runs with
no bounds checking at all!  The remaining carry loop has a slightly
simpler check for when the remaining iterator runs dry.
2017-09-20 11:41:59 -07:00
bors[bot] 8646be5a95 Merge #330
330: Implement *Assign for BigUint r=cuviper a=Darksonn

Not only does this change increase convenience of use, it also allows adding a `&BigUint` to a `&mut BigUint` without allocating (if not necessary) or tricks such as:

    fn add(a: &mut BigUint, b: &BigUint) {
        let aa = mem::replace(a, BigUint::from_slice(&[])); // BigUint::from_slice(&[]) does not allocate
        *a = aa + b;
    }

With this change:

    fn add(a: &mut BigUint, b: &BigUint) {
        *a += b;
    }

It would make sense to add the same functionality to `BigInt`, but it uses some macros to handle the signs, and I'm not sure how to change the macros in order to perform this change.
2017-09-20 01:11:28 +00:00
Josh Stone 3c1c84307c bigint: make sure bigand is normalized 2017-09-19 17:53:13 -07:00
Josh Stone 952dba4e06 remove unused lifetime from forward_val_assign 2017-09-19 17:36:17 -07:00
bors[bot] 85bd97fcfe Merge #327
327: Add general Rem and Num implementations for Complex<T> r=cuviper a=carrutstick

This should address #209 with eyes towards addressing #321.

It was a little tricky to get `Rem` working for a general `Num`, and I had to add a `PartialOrd` constraint to get it working, but I think it should be fairly robust.

I could probably use extra eyes on the `from_str_radix` function, as I mostly lifted the code from the `from_str` function and I may be missing some subtleties in how that works.
2017-09-19 23:55:32 +00:00
Josh Stone 3adce78385 macros: bump to 0.1.37 2017-09-19 16:28:23 -07:00
Josh Stone ec0342e9f1 macros: add ast::Arm beginning_vert 2017-09-19 16:27:02 -07:00
Josh Stone 953087fe4e Fix biguint assert_assign_op for rust 1.8
The `$op` only seems to be accepted when used indirectly through another
macro, in this case `assert_eq`.  How nice.
2017-09-19 14:00:51 -07:00
Josh Stone 98a3f17db6 Fix impl_rem_assign_scalar for rust 1.8 2017-09-19 13:47:59 -07:00
Isaac Carruthers b29c13e54f Remove unnecessary PartialOrd constraint on new Rem implementation. 2017-09-11 17:13:01 -04:00
Alice Ryhl ff8f106186 Test *Assign for BigUint 2017-09-03 10:44:17 +02:00
Alice Ryhl 555dab7d33 Implement ShrAssign and ShlAssign for BigUint 2017-09-03 09:56:29 +02:00
Alice Ryhl 2f6c0bf354 Implement BitXorAssign for BigUint 2017-09-03 09:53:33 +02:00
Alice Ryhl 8c3b2de11c Implement BitAndAssign and BitOrAssign for BigUint 2017-09-02 23:37:54 +02:00
Alice Ryhl 23085800e0 Implement RemAssign for BigUint 2017-09-02 23:29:34 +02:00
Alice Ryhl e85ab24567 Forward by-value biguint and scalars to {Add,Mul,Sub,Div}Assign 2017-09-02 22:38:12 +02:00
Alice Ryhl 04117fafe9 Implement DivAssign for BigUint 2017-08-26 14:50:01 +02:00
Alice Ryhl 17030ea412 Implement SubAssign for BigUint 2017-08-26 14:50:01 +02:00
Alice Ryhl 8c47ca00c7 Implement MulAssign for BigUint 2017-08-26 14:50:01 +02:00
Alice Ryhl 03d717f26f Implement AddAssign for BigUint 2017-08-26 14:50:01 +02:00
Isaac Carruthers 263bd0ec44 Switch to using a simpler scheme for complex remainders 2017-08-22 16:14:36 -04:00
Isaac Carruthers 42a6ae5353 Extract common logic for from_str and from_str_radix for `Complex` 2017-08-22 14:27:43 -04:00
Nicolas Kirchner bcd76c55e8 Optimize mac_digit 2017-08-15 21:14:15 +02:00
Nicolas Kirchner 243bc6fe4c Optimize Toom-3 algorithm 2017-08-15 19:27:22 +02:00
Nicolas Kirchner b43c1ab258 Replace the use of a feature not yet implemented in rust 1.8 2017-08-15 01:39:43 +02:00
Nicolas Kirchner c9c40b9402 Optimize and clean the Toom-3 algorithm and choose better thresholds 2017-08-14 20:07:35 +02:00
Nicolas Kirchner d7554ad931 Naive implementation of the Toom-3 algorithm
The Toom-2 algorithm is bypassed for tests.
2017-08-13 23:32:03 +02:00
Isaac Carruthers 41d6a32dba Removed extraneous where clauses 2017-08-10 11:11:31 -04:00
Isaac Carruthers 2dcb722007 Merge remote-tracking branch 'upstream/master' 2017-08-09 18:10:54 -04:00
Isaac Carruthers 1b671ca43e Add general Rem and Num implementations for Complex<T> 2017-08-08 21:52:43 -04:00
Nicolas Kirchner 10127907f5 Add a bench for bigint multiply
This bench allows to see the increase of time
if we double the size of one of the operands.
2017-08-03 18:30:09 +02:00
bors[bot] e7df30bac4 Merge #325
325: Implement assign_from_slice r=cuviper

This commit implements `assign_from_slice(..)` for `BigUint` and `BigInt`. `assig_from_slice` is for performance : it allows to reassign a value to a `BigInt` or a `BigUint` without useless reallocations. It would be useful for loops for example. I need it to implement the Toom-3 algorithm.

I also added a missing test for `BigInt::from_slice(..)`.
2017-08-03 01:23:53 +00:00
Nicolas Kirchner cbdaf8f6f9 Optimize `BigInt::from_biguint` and `BigInt::assign_from_slice`
It removes useless memory allocations.
2017-08-02 22:25:21 +02:00
Nicolas Kirchner 5106fcc95a Replace `Vec::copy_from_slice` not implemented in rust 1.8 by another method 2017-08-02 16:38:38 +02:00
Nicolas Kirchner 9b56d6667c Implement assign_from_slice 2017-08-02 16:12:04 +02:00
bors[bot] 54fe41f305 Merge #323 #324
323: Add CI badge r=cuviper



324: Add CI badge r=cuviper

This adds the CI badge to the pages on crates.io, #323 adds it to the README. Sorry for the separate PRs, but I didn't feel like forking and cloning the repository down to my laptop and simply used the GitHub online editor instead :-)
2017-07-25 00:21:18 +00:00
Martin Geisler 97bc42854a Add CI badge 2017-07-25 00:17:17 +02:00
Martin Geisler 8d64ff9708 Add CI badge 2017-07-25 00:16:07 +02:00
Josh Stone 846ef39ba6 complex: bump to 0.1.40 with fixed traits dep 2017-07-23 21:24:34 -07:00
bors[bot] a8ebac5af1 Merge #317
317: Feature/complex from str r=cuviper

This commit adds a basic parser for Complex types in Cartesian form, per https://github.com/rust-num/num/issues/289. It will take numbers of the form `a + bi`, `ai + b`, `a - bi`, `ai - b`, `a`, or `ai`. At least one space between the real/imaginary parts and the operator is mandatory; without bringing in a dependency on some regex crate, it's nontrivial to handle cases like, e.g., 0.217828e+1+31.4159E-1, or a similar case with polar coordinates. I could work on these issues later if you like.
2017-07-19 22:19:24 +00:00
Josh Stone ee6bbdb2f6 complex: refactor ParseComplexError a little 2017-07-19 15:16:34 -07:00
Josh Stone bd22a89a32 complex: Simplify the from_str signature 2017-07-19 12:49:03 -07:00
Josh Stone 79c7a4be5f complex: relax the FromStr trait requirements even more 2017-07-19 12:47:07 -07:00
Alan Liddell 16a180f132 simplifies parse loop, allows leading '+', parametrizes Error on T::Err 2017-07-19 06:03:05 -04:00
Alan Liddell add0fbf0f0 More informative error messages for complex::from_str 2017-07-16 15:20:50 -04:00
Alan Liddell 38ee1304bb Cleaned out some allocations 2017-07-16 09:51:55 -04:00
Josh Stone 23d1ab689d num: bump to 0.1.40 2017-07-14 17:42:00 -07:00
Josh Stone 4e9b426c30 rational: bump to 0.1.39 2017-07-14 17:39:21 -07:00
Josh Stone fe55d1fb4e iter: bump to 0.1.34 2017-07-14 17:38:12 -07:00
Josh Stone 59b8433a5e derive: bump to 0.1.41 2017-07-14 17:36:17 -07:00
Josh Stone 11a23dd5d7 complex: bump to 0.1.39 2017-07-14 17:33:58 -07:00
Josh Stone ea2158f3dd bigint: bump to 0.1.40 2017-07-14 17:32:18 -07:00
Josh Stone 63aa15ae9a integer: bump to 0.1.35 2017-07-14 17:30:18 -07:00
Josh Stone ca433f74ab traits: bump to 0.1.40 2017-07-14 17:28:12 -07:00
Alan Liddell 97e6d45d03 Adds more tests, including failure cases 2017-07-13 14:50:27 -04:00
Alan Liddell 14d323f5a3 Allows 'j' for imaginary unit 2017-07-13 14:13:04 -04:00
Alan Liddell ac746c2a5d Allows for arbitrary spacing between operands when parsing Complex 2017-07-13 14:05:44 -04:00
bors[bot] d159ed63be Merge #320
320: complex: implement real ops directly r=cuviper

It's more efficient to implement these without creating an intermediate
complex value -- at the least, we don't have to rely on the compiler
optimizing out zero-ops.
2017-07-12 22:03:07 +00:00
bors[bot] a07eaab226 Merge #274
274: Implement OpAssign for Complex r=cuviper

Design choice: Use by-value forms of OpAssign and use Clone to forward the reference arguments. That matches what the other traits do (for example Add).

Design choice: The complex += complex operation needs Add, not just AddAssign. The complex += real operation can use just AddAssign. You could just use Add for both, not sure which way is preferable.
2017-07-12 21:41:21 +00:00
Josh Stone f06f5c548e complex: implement real ops directly
It's more efficient to implement these without creating an intermediate
complex value -- at the least, we don't have to rely on the compiler
optimizing out zero-ops.
2017-07-12 14:37:50 -07:00
Josh Stone d57c0c2879 complex: implement add/sub_assign directly 2017-07-12 13:59:30 -07:00
Josh Stone 055c6693b1 complex: require T:NumAssign for assign ops 2017-07-12 13:54:57 -07:00
bluss 686411f44e complex: Add tests for OpAssign
Add tests by expanding the current a + b tests to include a += b, and so
on.
2017-07-12 13:48:12 -07:00
bluss 3ec194bafb complex: implement OpAssign for Complex<T> 2017-07-12 13:48:12 -07:00
bors[bot] ebc36b3e55 Merge #313
313: Scalar operations across all integer types r=cuviper

With my apologies for opening a new PR, and also for the 8 month delay, this continues the work started in #237 - the discussion there outlines the goals I was aiming for. I suppose this supersedes that PR and the other one can now be closed.

This PR adds support for Add, Sub, Mul, Div and Rem operations involving one BigInt/BigUint and one primitive integer, with operands in either order, and any combination of owned/borrowed arguments.
2017-07-12 05:16:29 +00:00
Josh Stone e5434dc659 Add assert_scalar_op! for DRYer testing 2017-07-11 21:59:10 -07:00
Josh Stone 6afac825d9 test and fix more scalar add cases 2017-07-11 17:27:19 -07:00
Josh Stone 18a5bfcd0b fix endianness of to/from_doublebigdigit calls 2017-07-11 17:22:11 -07:00
Josh Stone 18cc1902fb inline i32_abs_as_u32 and i64_abs_as_u64 2017-07-11 17:01:15 -07:00
bors[bot] 73a2dfd647 Merge #314
314: Derive ToPrimitive for enums r=cuviper

I had to double the compile fail tests, as they will bail on the first error.

I have some ideas for more complex to/from primitive derives (with inner values that implement to/from primitive), but I'll save those for a future PR.
2017-07-11 22:28:02 +00:00
bors[bot] 26af99cf39 Merge #318
318: Add cargo keywords and categories. r=cuviper

Fixes #306. Suggestions welcome for better keywords/categories, though there is a limit of 5 of each.
2017-07-11 22:20:41 +00:00
Keith Wansbrough ef83e851e7 Add keywords and categories to subcrates too. 2017-07-11 09:30:42 +01:00
Keith Wansbrough c87faf46a6 Tweak categories based on review. 2017-07-11 09:47:15 +01:00
Keith Wansbrough eddcb54d6b Add cargo keywords and categories.
Resolves #306. Suggestions welcome for better keywords/categories, though there is a limit of 5 of each.
2017-07-11 09:47:15 +01:00
bors[bot] bcccab17dd Merge #311
311: rational: make sure Hash agrees with Eq r=cuviper

We can't use a derived `Hash` when we have a manual `Eq`, because we
need to uphold the invariant `a == b` → `h(a) == h(b)`.  Since `Eq`
doesn't require them to be in reduced form, `Hash` also needs to be
normalized.

Fixes #310.
2017-07-10 20:12:23 +00:00
bors[bot] 36b492a191 Merge #315
315: Fix float NaN positive/negative assumptions r=cuviper

These are the minimal assumptions to make about `NaN`. Fixes part of #312 (but not the `next` branch).
2017-07-10 17:31:04 +00:00
Alan Liddell e5e8266009 handles case where imaginary part is just 'i' or '-i', adds tests 2017-07-10 09:51:46 -04:00
Alan Liddell 506fbaf4e7 swap 'Some(u)' out for '_' to suppress unused variable warnings 2017-07-10 08:09:49 -04:00
Alan Liddell 3c490cdee4 adds basic parser for complex numbers in Cartesian form 2017-07-10 05:57:38 -04:00
Lee Bousfield 426034ba09
Switch doctests to match functions 2017-07-09 08:30:22 -04:00
Josh Stone 31fa9f626a Merge pull request #316 from cuviper/bors-ng
Enable bors-ng
2017-07-08 22:51:41 -07:00
Josh Stone b181cae401 Enable bors-ng 2017-07-08 22:29:48 -07:00
Josh Stone 3299702e69 Whitelist branches for CI 2017-07-08 22:28:49 -07:00
Lee Bousfield aaa4ab357f
Clarify what "newer versions of Rust" applies to 2017-07-08 17:21:32 -04:00
Lee Bousfield f0fa65a9d5
Fix float NaN pos/neg assumptions 2017-07-08 17:15:35 -04:00
Lee Bousfield 5f3a3b0004
Derive ToPrimitive for enums 2017-07-08 11:24:42 -04:00
Sam Cappleman-Lynes 1fb03ca18a Make new code work on rustc-1.8.0
- Don't apply attributes to statements (1.12.0)
 - Don't use checked_abs (1.13.0)
2017-06-30 00:39:37 +01:00
Sam Cappleman-Lynes 2a3cd41820 Add scalar ops for all remaining integer types 2017-06-29 22:18:54 +01:00
Sam Cappleman-Lynes fd87d87db3 Fix normalization in scalar addition 2017-06-29 20:40:54 +01:00
Josh Stone 3f32ad48f4 rational: make sure Hash agrees with Eq
We can't use a derived `Hash` when we have a manual `Eq`, because we
need to uphold the invariant `a == b` → `h(a) == h(b)`.  Since `Eq`
doesn't require them to be in reduced form, `Hash` also needs to be
normalized.
2017-06-29 11:52:25 -07:00
Sam Cappleman-Lynes 99873d06e5 Scalar operations on integer types up to 32 bits 2017-06-29 18:29:14 +01:00
Sam Cappleman-Lynes 94d570697c Add operations on i32 to BigInt 2017-06-29 17:20:17 +01:00
Sam Cappleman-Lynes 9b0392d235 Add scalar division to BigInt 2017-06-29 16:19:11 +01:00
Sam Cappleman-Lynes 8b1288ea01 Add scalar multiplication to BigInt 2017-06-29 15:46:07 +01:00
Sam Cappleman-Lynes 79448cbdf9 Add scalar subtraction to BigInt 2017-06-29 15:15:59 +01:00
Sam Cappleman-Lynes 80feea2722 Also implement scalar addition for BigInt 2017-06-29 14:07:44 +01:00
Sam Cappleman-Lynes 1e26bdde81 Remove unnecessary normalization 2017-06-29 13:53:08 +01:00
Sam Cappleman-Lynes d0bfb54eee All variants of dividing BigUint by BigDigit
Allow the division to occur with either operand order and with any
combination of owned and borrowed arguments.
2017-06-29 13:38:00 +01:00
Sam Cappleman-Lynes 51408a9b3b All variants of subtracting BigDigit from BigUint
Allow the subtraction to occur with either operand order and with any
combination of owned and borrowed arguments.
2017-06-29 10:12:53 +01:00
Sam Cappleman-Lynes 5738141b7c Distinction for commutative scalar ops 2017-06-29 09:59:42 +01:00
Sam Cappleman-Lynes fd2f516a5d All variants of multiplying BigUint by BigDigit
Allow the multiplication to occur with either operand order and with any
combination of owned and borrowed arguments.
2017-06-29 09:56:15 +01:00
Sam Cappleman-Lynes e5ed503141 Implement all variants of adding BigDigit to BigUint
Allow the addition to occur with either operand order, and with any combination
of owned and borrowed arguments.
2017-06-29 08:41:46 +01:00
Sam Cappleman-Lynes 784d26bbf8 Scalar division of a BigUint by a BigDigit
A BigUint can be divided by a BigDigit - this is one of several
operations being implemented to allow scalar operations on BigInt and
BigUint across the board.
2017-06-28 16:59:35 +01:00
Sam Cappleman-Lynes 530e2f6022 Fix typo in comment in division algorithm 2017-06-28 16:26:40 +01:00
Sam Cappleman-Lynes 7b7799eab7 Scalar subtraction of a BigDigit from a BigUint
A BigDigit can be subtracted from a BigUint - this is one of several
operations being implemented to allow scalar operations on BigInt and
BigUint across the board.
2017-06-28 16:24:56 +01:00
Sam Cappleman-Lynes a2a28c682e Scalar addition of BigDigit to BigUint
A BigDigit can be added to a BigUint - this is one of several
operations being implemented to allow scalar operations on BigInt and
BigUint across the board.
2017-06-28 16:11:02 +01:00
Sam Cappleman-Lynes e520bdad0d Add scalar multiplication to BigUint, BigInt
BigUint and BigInt can now be multiplied by a BigDigit, re-using the same buffer for the output, thereby reducing allocations and copying.
2017-06-28 14:02:45 +01:00
Josh Stone 8964c65f38 bigint: apply a consistent order of conversion methods 2017-06-21 17:52:24 -07:00
Josh Stone 8dd6890ddc Merge commit 'refs/pull/304/head' of github.com:rust-num/num 2017-06-21 17:33:46 -07:00
Eduardo Pinho 15f9334955 De-generalize `twos_complement' helper function 2017-06-20 01:31:49 +01:00
Eduardo Pinho 61cfdc37b3 BigInt two's complement adjustments
- rename `_twos_complement_` methods to just `_signed_`
- make `from_` variants take &[u8]
- refactor helper functions twos_complement (they take byte slice but use a generic function underneath)
- fix issues in `to_signed_` functions (only two's complement negative numbers; perform byte extension where needed)
- add tests to `to_signed_` methods
2017-06-18 01:42:56 +01:00
Phaiax 563e4dc509 from_radix_be/le for BigInt 2017-06-16 23:28:49 +02:00
Eduardo Pinho 1660590125 Add BigInt 2's complement conversions
- add methods `from_twos_complement_bytes_le`, `from_twos_complement_bytes_be`, `to_twos_complement_bytes_le`, and `to_twos_complement_bytes_be` to `BigInt`.
- add respective tests
2017-06-16 17:58:04 +01:00
Phaiax 1ea02d8d0c Add _be/_le postfix to from/to_radix functions (BigInt) 2017-06-13 15:36:59 +02:00
Phaiax fc09503d3d Add fn from_radix() for radix > 36. 2017-06-11 20:08:43 +02:00
Phaiax 1ab07df709 Add fn to_radix() for radix > 36. 2017-06-11 18:31:44 +02:00
Josh Stone b1b034f438 num: bump to 0.1.39 2017-06-09 11:03:50 -07:00
Josh Stone d2defd67f2 bigint: bump to 0.1.39 2017-06-09 11:02:16 -07:00
Josh Stone 81e932b671 rational: bump to 0.1.38 2017-06-09 10:58:40 -07:00
Josh Stone 796adf5dfa traits: bump to 0.1.39 2017-06-09 10:56:13 -07:00
Homu 5cd52741c4 Auto merge of #301 - cuviper:revert-296, r=cuviper
Revert "Auto merge of #296 - vks:no_std, r=cuviper"

This reverts commit 8b5d4ac24e, reversing
changes made to ef752e4687.

See #297 -- it's a breaking change to feature-gate existing APIs.
2017-06-10 02:26:53 +09:00
Josh Stone fe34d17aaf Revert "Auto merge of #296 - vks:no_std, r=cuviper"
This reverts commit 8b5d4ac24e, reversing
changes made to ef752e4687.
2017-06-09 10:12:50 -07:00
Homu 681bbf8659 Auto merge of #300 - cuviper:no-default-subcrates, r=cuviper
Test and fix subcrates with --no-default-features

- The CI script now tests them all with --no-default-features.
- bigint: testing needs rand even when the main feature is disabled.
- rational: gate `FromPrimitive for Ratio<BigInt>` on having bigint.
2017-06-10 02:00:14 +09:00
Josh Stone 8b9cdaada2 Test and fix subcrates with --no-default-features
- The CI script now tests them all with --no-default-features.
- bigint: testing needs rand even when the main feature is disabled.
- rational: gate `FromPrimitive for Ratio<BigInt>` on having bigint.
2017-06-09 09:54:50 -07:00
Homu f809c79d9f Auto merge of #299 - dotdash:rational-fix, r=cuviper
Fix building without the num-bigint feature
2017-06-10 01:54:07 +09:00
Björn Steinbrink 33ca084e85 Fix building without the num-bigint feature 2017-06-09 18:45:44 +02:00
Josh Stone 7bf9a6ccf2 num: bump to 0.1.38 2017-06-08 23:53:47 -07:00
Josh Stone 1033388e02 rational: bump to 0.1.37 2017-06-08 23:50:30 -07:00
Josh Stone a6d4d6e67d bigint: bump to 0.1.38 2017-06-08 23:48:27 -07:00
Josh Stone 9a9765a1db complex: bump to 0.1.38 2017-06-08 23:46:08 -07:00
Josh Stone ae438d3608 traits: bump to 0.1.38 2017-06-08 23:42:41 -07:00
Homu 8b5d4ac24e Auto merge of #296 - vks:no_std, r=cuviper
traits: Introduce std feature

This makes it possible to build `traits` without `std`. For this a new
trait `BasicFloat` was introduced, implementing some basic functionality
that works with `core`. Most notably this is lacking functions like
`cos`, `sin`, etc.

`Float` is not available without `std`.

Refs #216.
2017-06-09 15:25:08 +09:00
Vinzent Steinberg ba73ba2af0 Avoid infinite recursion on `no_std` 2017-06-08 10:02:39 +02:00
Vinzent Steinberg b7d2a99d09 Add word of caution about `Float` and `no_std` 2017-06-07 12:22:26 +02:00
Vinzent Steinberg 63ce0f04ae Don't duplicate `num_traits::pow` 2017-06-07 12:17:16 +02:00
Vinzent Steinberg f8a61962ba Use native `to_degrees`/`to_radians` 2017-06-07 12:05:53 +02:00
Vinzent Steinberg d201882c61 Fix typo 2017-06-07 11:59:28 +02:00
Vinzent Steinberg 128e456342 Travis, please test traits with no_std 2017-06-02 12:01:31 +02:00
Vinzent Steinberg 169105bb84 Implement `Float::{min, max}` for `no_std` 2017-06-02 11:47:46 +02:00
Vinzent Steinberg 6253669ef4 Mark methods in `Float` whether they require `std`
This removes the `BasicFloat` trait.
2017-06-02 11:47:45 +02:00
Vinzent Steinberg 351dfc6383 traits: Introduce std feature
This makes it possible to build `traits` without `std`. For this a new
trait `BasicFloat` was introduced, implementing some basic functionality
that works with `core`. Most notably this is lacking functions like
`cos`, `sin`, etc.

`Float` is not available without `std`.

Refs #216.
2017-05-31 13:44:39 +02:00
Homu ef752e4687 Auto merge of #291 - cuviper:hasher, r=cuviper
Get the default hasher indirectly

`DefaultHasher` wasn't stable until 1.13, at which point all the other
hashers were deprecated, so it's not easy for us to name a hasher type to
use for testing.  However, `RandomState` has been stable since 1.7, and it
implements `BuildHasher` that has a `Hasher` associated type.

(extends #287)
2017-05-07 14:48:07 +09:00
Josh Stone 1b895a8632 Get the default hasher indirectly
`DefaultHasher` wasn't stable until 1.13, at which point all the other
hashers were deprecated, so it's not easy for us to name a hasher type
to use for testing.  However, `RandomState` has been stable since 1.7,
and it implements `BuildHasher` that has a `Hasher` associated type.
2017-05-06 22:23:31 -07:00
Homu f9d36e6d9b Auto merge of #283 - cuviper:more-num, r=cuviper
Add new traits for reference and assignment operators

There are two new "utility" traits covering the basic operators:
`Add`, `Sub`, `Mul`, `Div`, and `Rem`.

- `NumOps<Rhs, Output>`: operators with an arbitrary operand and output.
- `NumAssignOps<Rhs>`: assignment operators with an arbitrary operand.

Then the new collection of numeric traits are:

- `Num`: effectively unchanged, just taking operands by value.
- `NumRef`: `Num` adding reference operands on the right side.
- `RefNum`: `&T` operators, with either `T` or `&T` on the right side.
  - This does not specify `T: Num`, as rust-lang/rust#20671 means that
    could only add a constraint, without implying its presence for use.
- `NumAssign`: `Num` adding assignment operators by value.
- `NumAssignRef`: `NumAssign` adding reference assignment operators.
  - Nothing actually implements this yet!

Acknowledgement: this is roughly based on [@andersk's suggestion](https://github.com/rust-num/num/issues/94#issuecomment-269073071).
2017-05-07 13:40:39 +09:00
Josh Stone 3ead4a16b5 Implement RefNum more generically 2017-05-06 21:35:38 -07:00
Josh Stone 21b520ea15 Add new traits for reference and assignment operators
There are two new "utility" traits covering the basic operators:
`Add`, `Sub`, `Mul`, `Div`, and `Rem`.

- `NumOps<Rhs, Output>`: operators with an arbitrary operand and output.
- `NumAssignOps<Rhs>`: assignment operators with an arbitrary operand.

Then the new collection of numeric traits are:

- `Num`: effectively unchanged, just taking operands by value.
- `NumRef`: `Num` adding reference operands on the right side.
- `RefNum`: `&T` operators, with either `T` or `&T` on the right side.
  - This does not specify `T: Num`, as rust-lang/rust#20671 means that
    could only add a constraint, without implying its presence for use.
- `NumAssign`: `Num` adding assignment operators by value.
- `NumAssignRef`: `NumAssign` adding reference assignment operators.
  - Nothing actually implements this yet!

Acknowledgement: this is roughly based on [@andersk's suggestion][1].

[1] https://github.com/rust-num/num/issues/94#issuecomment-269073071
2017-05-06 21:35:38 -07:00
Homu ef08fe2f96 Auto merge of #286 - yoanlcq:missing-impls-for-wrapping, r=cuviper
impl remaining num-traits for std::num::Wrapping<T>

This is a (late) follow-up for [https://github.com/rust-num/num/pull/279](https://github.com/rust-num/num/pull/279) since I realized that implementing `Num` for `Wrapping<T>` was merely half of the work.

This PR makes `Wrapping<T>` implement the remaining appropriate traits, granting it the ability to really be used a complete substitute for its primitive integer counterparts.
Some benefits are :
- Less refactoring for users using `num`'s traits replacing some primitives by their `Wrapping` counterpart (same for the opposite);
- Since `Wrapping<T>` is from `std`, nobody except us can `impl` our traits for it, so people don't have to create their own.
2017-05-07 13:26:44 +09:00
Josh Stone 9115df6179 Merge branch 'master' into missing-impls-for-wrapping 2017-05-06 21:25:28 -07:00
Homu 51e95550fc Auto merge of #285 - sdroege:ratio-approx-from-float, r=cuviper
rational: Implement approximation from floats and FromPrimitive for v…

…arious types

FromPrimitive is implemented for i8/16/32/64 and BigInt.

https://github.com/rust-num/num/issues/282
2017-05-06 13:27:39 +09:00
Homu d5ca939959 Auto merge of #290 - king6cong:master, r=cuviper
add missing '`' in README.md

None
2017-05-03 16:03:29 +09:00
king6cong ea45567f0c add missing '`' in README.md 2017-05-03 14:41:43 +08:00
Sebastian Dröge f74753089b rational: Implement approximation from floats and FromPrimitive for various types
FromPrimitive is implemented for i8/16/32/64 and BigInt.

https://github.com/rust-num/num/issues/282
2017-05-02 02:28:27 +03:00
Yoan Lecoq 9d8c808db6 comment out wrapping_is_signed test to make Rust 1.8 happy 2017-05-01 14:11:10 +02:00
Yoan Lecoq fd50c9196b Added trait bounds tests for Wrapping 2017-05-01 13:42:30 +02:00
Yoan Lecoq 3b7a775f38 Remove Signed Wrapping test because Wrapping doesn't impl Neg in Rust 1.8 2017-04-30 10:45:51 +02:00
Yoan Lecoq 3896c64dc7 Attempt to work around E0425 in test macros on Rust 1.8 2017-04-30 10:33:35 +02:00
Yoan Lecoq 3f6ea76e60 Removed some #[inline] hints again 2017-04-30 10:17:44 +02:00
Yoan Lecoq 807584688c Added some tests for Wrapping<T>'s impls 2017-04-30 10:17:06 +02:00
Yoan Lecoq b90cfaaa7f Revert "impl PrimInt for Wrapping<T>"
This reverts commit 579466d95c.
2017-04-30 08:32:59 +02:00
Yoan Lecoq f4e0b47ceb Revert #[inline] hints 2017-04-30 08:32:25 +02:00
Yoan Lecoq 81aa6dbe48 Revert impl for Checked and Saturating 2017-04-30 08:29:21 +02:00
Yoan Lecoq 760604361d Add missing #[inline] hints 2017-04-29 08:35:37 +02:00
Yoan Lecoq 47b8c7b5ae impl Wrapping ops for Wrapping<T> 2017-04-29 08:29:02 +02:00
Yoan Lecoq 9c3e9791d2 impl Checked* and Saturating for Wrapping<T> 2017-04-29 08:22:44 +02:00
Yoan Lecoq f249edf546 impl ToPrimitive, FromPrimitive and NumCast for Wrapping<T> 2017-04-29 08:04:59 +02:00
Yoan Lecoq 35a9bcba19 impl Bounded for Wrapping<T> 2017-04-29 07:51:04 +02:00
Yoan Lecoq b2d957fe4b Small fix for older Rust versions 2017-04-29 07:47:39 +02:00
Yoan Lecoq 579466d95c impl PrimInt for Wrapping<T> 2017-04-29 07:46:51 +02:00
Yoan Lecoq 5b126673aa impl Signed and Unsigned for Wrapping<T> 2017-04-29 07:21:14 +02:00
Patrick Jackson 71a15212a1 Replace deprecated SipHasher. 2017-04-28 18:48:50 -07:00
Homu e2ea246016 Auto merge of #279 - yoanlcq:impl-num-for-wrapping, r=cuviper
Implemented Zero, One and Num for std::num::Wrapping<T>

Attempts to fix issue #278
2017-04-22 02:18:42 +09:00
Yoan Lecoq 2172a9368b impl One for Wrapping doesn't require Add 2017-04-21 19:10:42 +02:00
Yoan Lecoq 356a4ba5b5 Removed useless trait bounds 2017-04-21 18:56:23 +02:00
Yoan Lecoq b562c1ec39 Minor changes for correctness 2017-04-21 18:47:42 +02:00
Yoan Lecoq 9b06d4a0bb Attempt at fixing E0411 on older rust versions 2017-04-21 10:31:29 +02:00
Yoan Lecoq b024e1c326 Implemented Zero, One and Num for Wrapping<T> 2017-04-21 09:26:53 +02:00
Josh Stone 6513a5618b num-integer-0.1.34 2017-04-09 06:22:05 -07:00
Josh Stone fca95eaf42 num-complex-0.1.37 2017-04-09 06:18:09 -07:00
Homu aff06286ad Auto merge of #275 - bluss:repr-c, r=cuviper
Complex: Use repr(C) and add documentation for what it means

Here's an ambitious proposal that puts currently practiced ffi usage of `Complex<f32/f64>` on sound footing.

Fixes  #79

Current users appear to be:

- https://crates.io/crates/blas
  + Their use is not about Complex<f64> in an extern function's signature, but it is explicitly using that it is memory layout compatible.
2017-04-05 01:53:14 +09:00
bluss 0cf3419b9e complex: Use repr(C) and add documentation for what it means 2017-04-04 06:48:35 +02:00
Homu f63c933737 Auto merge of #272 - vks:binomial-coeffs, r=cuviper
Implement an iterator over the binomial coefficients

I'm not very happy with the excessive cloning, but to fix it the bounds on the type parameters would have to be excessive. We probably need something like [this](https://github.com/vks/discrete-log/blob/master/src/main.rs#L90) in `num-traits`.
2017-03-31 10:29:14 +09:00
Vinzent Steinberg 0fc6cb15a5 binomial: Discuss overflow 2017-03-29 14:13:39 +02:00
Vinzent Steinberg a7b459c05e Make `binomial` and `IterBinomial` less likely to overflow 2017-03-26 15:57:25 +02:00
Homu 4fc1e28832 Auto merge of #271 - vks:multinomial, r=cuviper
Implement multinomial
2017-03-26 04:40:20 +09:00
Homu 904d9b494f Auto merge of #170 - DonSheddow:complex-fmt, r=cuviper
Add formatting options for Complex

This adds LowerExp and UpperExp traits for Complex, taking precision into account. Fixes #148
2017-03-26 04:31:24 +09:00
Sigurd Kolltveit 2784b89837 Remove support for zero padding 2017-03-20 19:04:17 +01:00
Vinzent Steinberg d4deba6947 IterBinomial: Make tests closer to overflow threshold (like for binomial) 2017-03-20 10:45:27 +01:00
Vinzent Steinberg 47613ff5ff IterBinomial: Only return coefficient 2017-03-20 10:20:15 +01:00
Vinzent Steinberg e486e6a981 Address some of @cuviper's feedback 2017-03-20 10:14:01 +01:00
Vinzent Steinberg 3de345f912 Don't panic when calculating multinomial 2017-03-20 09:43:01 +01:00
Sigurd Kolltveit e044cfbc6d Simplify some lines 2017-03-18 17:24:00 +01:00
Sigurd Kolltveit 69943915ba Add more string formatting tests 2017-03-18 16:04:53 +01:00
Sigurd Kolltveit e2759e0321 Implement more formatting options for Complex 2017-03-18 16:04:53 +01:00
Sigurd Kolltveit 6113192e04 Add tests for more formatting options 2017-03-18 16:04:53 +01:00
Sigurd Kolltveit f138f3da9e Add formatting options for Complex 2017-03-18 16:04:53 +01:00
Vinzent Steinberg c408bd6605 Try to fix build on Rust 1.8 2017-03-17 18:21:06 +01:00
Vinzent Steinberg 8d235759dd Implement an iterator over the binomial coefficients 2017-03-17 18:03:58 +01:00
Vinzent Steinberg ebe3f85976 Implement multinomial 2017-03-17 17:27:46 +01:00
Homu 2adf018aa6 Auto merge of #270 - vks:binomial, r=cuviper
Implement binomial

The implementation avoids overflows and fractions.
2017-03-16 08:55:20 +09:00
Vinzent Steinberg 40cbe1ff20 Use correct formula 2017-03-12 10:23:27 +01:00
Vinzent Steinberg 07df43b034 Address binomial review feedback
* Use substraction instead of division in comparison.
* More tests.
* Add comment.
2017-03-12 10:17:49 +01:00
Vinzent Steinberg 2f6eb31903 Implement binomial
The implementation avoids overflows and fractions.
2017-03-11 16:44:51 +01:00
Josh Stone d23e3f32b8 num-bigint-0.1.37 2017-03-08 11:14:32 -08:00
Homu fe21c725e8 Auto merge of #269 - cuviper:biguint-parse-plus, r=cuviper
bigint: Create the parsing error better for nested `+`

If a `+` is encountered in the middle of parsing a BigUint, this should
generate an `ParseIntError::InvalidDigit`.  Since we can't create that
directly, we get it by trying to parse a `u64` from this point, but of
course `+` is a perfectly valid prefix to a `u64`.

Now we include the previous character in the string passed to `u64`, so it
has proper parsing context to understand what's in error.

Fixes #268.
2017-03-09 04:10:48 +09:00
Josh Stone 0b6cae0dc7 bigint: Create the parsing error better for nested `+`
If a `+` is encountered in the middle of parsing a BigUint, this should
generate an `ParseIntError::InvalidDigit`.  Since we can't create that
directly, we get it by trying to parse a `u64` from this point, but of
course `+` is a perfectly valid prefix to a `u64`.

Now we include the previous character in the string passed to `u64`, so
it has proper parsing context to understand what's in error.

Fixes #268.
2017-03-06 13:23:40 -08:00
Josh Stone 4b8c71fbec bigint: Cleanup unused imports 2017-03-06 13:20:30 -08:00
Josh Stone 66ce252494 Bump versions in the num collection 2017-02-26 14:18:33 -08:00
Josh Stone 6632ca8e1b Merge pull request #267 from cuviper/licenses
Add licenses to subcrates
2017-02-26 13:53:29 -08:00
Josh Stone 1a66ee9e80 Add licenses to subcrates 2017-02-26 13:39:23 -08:00
Homu d273495cbf Auto merge of #263 - cuviper:revamp-ci, r=hauleth
Bump rustc to 1.8 and revamp all CI

This bumps the minimum rustc to 1.8.0, "fixing" #257.  I normally
consider this a breaking change, but we were already broken due to
external factors, for which I couldn't find a workaround.

This adds 1.15.0 to the CI matrix to build stable num-derive.  We still
need nightly to run its tests though, because of compiletest_rs, and
dev-dependencies can't be optional.

The testing scripts are moved from .travis/ to ci/, as they don't really
need to be hidden.  It's also now consolidated into one test_full.sh
which considers $TRAVIS_RUST_VERSION as needed.
2017-02-10 09:19:34 +09:00
Josh Stone 1606fe7206 Bump rustc to 1.8 and revamp all CI
This bumps the minimum rustc to 1.8.0, "fixing" #257.  I normally
consider this a breaking change, but we were already broken due to
external factors, for which I couldn't find a workaround.

This adds 1.15.0 to the CI matrix to build stable num-derive.  We still
need nightly to run its tests though, because of compiletest_rs, and
dev-dependencies can't be optional.

The testing scripts are moved from .travis/ to ci/, as they don't really
need to be hidden.  It's also now consolidated into one test_full.sh
which considers $TRAVIS_RUST_VERSION as needed.
2017-02-09 16:09:48 -08:00
Josh Stone d561e4b702 Merge pull request #262 from Xaeroxe23/master
Add clamp function
2017-02-09 14:17:14 -08:00
Jacob Kiesel c78a48fd35 Improve documentation comments
Remove passive voice from documentation comments.
2017-02-08 15:10:01 -07:00
Jacob Kiesel 17665ec50d Update lib.rs
Make assert debug error more accurate.
2017-02-07 15:03:00 -07:00
Jacob Kiesel f8dcec366b Made requested changes. 2017-02-07 13:02:32 -07:00
Jacob Kiesel 182e08a091 Add inline attribute 2017-02-07 10:49:28 -07:00
Jacob Kiesel b346f9c2df Add a new line for improved formatting. 2017-02-07 10:18:23 -07:00
Jacob Kiesel a5445b7619 Adding documentation comments 2017-02-07 10:18:23 -07:00
Jacob Kiesel 07ff5b62b9 Changing to >= and <= as it's a slight optimization 2017-02-07 09:52:23 -07:00
Jacob Kiesel 28633b7e6d Add clamp function 2017-02-07 09:48:34 -07:00
Josh Stone 817ab00f64 Merge pull request #256 from nwin/add-wrapping-traits
Added traits for wrapping arithmetics.
2017-02-04 21:47:53 -08:00
nwin 58b7da46d2 Added tests. 2017-02-04 10:42:12 +01:00
Josh Stone ba54797d60 Merge pull request #258 from frewsxcv/patch-1
Add doc example for `num_traits::Num::from_str_radix`.
2017-01-31 09:37:30 -08:00
Corey Farwell 19109883de Add doc example for `num_traits::Num::from_str_radix`. 2017-01-30 23:42:27 -05:00
nwin 450c0e2760 Correct typos. 2017-01-26 21:12:27 +01:00
nwin ee9d474243 Ensure compatibility with Rust 1.0.0. 2017-01-22 10:13:50 +01:00
nwin d25f53056d Added traits for wrapping arithmetics.
Added `Wrapping` traits for the most common operations. Similar to the already present `Checked` traits.
2017-01-22 09:45:35 +01:00
Josh Stone 74f1e26f62 macros: bump to 0.1.37 2017-01-11 16:52:06 -08:00
Josh Stone 75372c0639 derive: bump to 0.1.39 2017-01-11 16:51:14 -08:00
Homu bda31b1a33 Auto merge of #252 - est31:master, r=cuviper
macros 1.1 is now stable

Fixes #251. Also includes a patch to get the tests working again.
2017-01-08 08:14:45 +09:00
est31 9aced4066e derive: custom derive is now stable 2017-01-07 23:51:55 +01:00
est31 c742cf9aec derive: use latest compiletest_rs crate
Version 2.2 was not compiling any more: https://github.com/laumann/compiletest-rs/issues/51
2017-01-07 23:51:21 +01:00
Homu a4faeeffc4 Auto merge of #250 - andersk:should_panic, r=cuviper
rational: test_recip_fail: Correct should_panic syntax

Fixes this warning with rustc nightly:

```
warning: attribute must be of the form: `#[should_panic]` or `#[should_panic(expected = "error message")]`
    --> rational/src/lib.rs:1051:7
     |
1051 |     #[should_panic = "== 0"]
     |       ^^^^^^^^^^^^^^^^^^^^^
     |
     = note: Errors in this attribute were erroneously allowed and will become a hard error in a future release.
```
2017-01-07 06:26:59 +09:00
Anders Kaseorg fd44a86866 rational: test_recip_fail: Correct should_panic syntax
Fixes this warning:

warning: attribute must be of the form: `#[should_panic]` or `#[should_panic(expected = "error message")]`
    --> rational/src/lib.rs:1051:7
     |
1051 |     #[should_panic = "== 0"]
     |       ^^^^^^^^^^^^^^^^^^^^^
     |
     = note: Errors in this attribute were erroneously allowed and will become a hard error in a future release.

Signed-off-by: Anders Kaseorg <andersk@mit.edu>
2017-01-06 15:05:01 -05:00
Homu d468177eee Auto merge of #248 - dnsl48:ratio_into_pair, r=cuviper
rational: Into<(T,T)> implementation

Right now it appears impossible to get integers without cloning them. Converting into a pair can be a cheap and easy way to extract the data.
2016-12-10 09:47:59 +09:00
dnsl48 9d7ab663b1 From<(T,T)> implementation 2016-12-10 09:19:02 +13:00
dnsl48 70da35dff5 Into<(T,T)> implementation 2016-12-10 08:39:06 +13:00
Homu 7db32a4ecd Auto merge of #246 - cuviper:complex-eq, r=hauleth
complex: derive Eq

Fixes #245.
2016-12-06 18:48:42 +09:00
Josh Stone 5531031252 complex: derive Eq
Fixes #245.
2016-12-05 23:11:40 -08:00
Homu dc8c8fc3f6 Auto merge of #244 - wictory:master, r=cuviper
Added trait From<T> for Ratio<T> where T: Clone + Integer

Hi!

So I thought that this kind of trait would be useful when one wants to write code which should be generic over different types of numbers.
2016-12-03 07:14:51 +09:00
Homu a63bbc916f Auto merge of #243 - cuviper:intern-macros, r=hauleth
macros: update string interning

None
2016-12-03 07:08:30 +09:00
Wictor Lund 4bdad38eee Added test for trait From<T> for Ratio<T> where T: Clone + Integer. 2016-12-01 22:07:03 +02:00
Wictor Lund de91d5d9e3 Added trait From<T> for Ratio<T> where T: Clone + Integer 2016-12-01 21:38:53 +02:00
Josh Stone be61427d03 derive: bump to 0.1.38 2016-11-28 09:46:18 -08:00
Josh Stone 7ebef5bbe6 macros: update string interning 2016-11-28 09:41:18 -08:00
Josh Stone d7cbdb509c Merge pull request #242 from rust-num/feat/do-not-duplicate-enum-definition
Fix code duplication error

(Overriding a CI failure due to `num-macros`.)
2016-11-28 09:39:36 -08:00
Łukasz Jan Niemier 20243f5baa
fix(num_derive): code duplication error
Fixes #240
2016-11-27 19:31:33 +01:00
Homu 8489f0c388 Auto merge of #239 - bluss:doc-root-url, r=cuviper
Add doc(html_root_url) and other doc attrs to each crate

Also update to use https instead of http. This avoids mixed content
degradation on docs.rs.

The doc root URLs are correct as they are, the URL does not include the
crate name itself.
2016-11-05 02:33:34 +09:00
bluss ff2a350e98 Use the integer32 playground 2016-11-02 19:51:10 +01:00
bluss e4a6956e5a Add doc(html_root_url) and other doc attrs to each crate
Also update to use https instead of http. This avois mixed content
degradation on docs.rs.

The doc root URLs are correct as they are, the URL does not include the
crate name itself.
2016-11-01 02:14:23 +01:00
Homu 938ec63c95 Auto merge of #238 - bluss:fix-mut, r=cuviper
traits: Remove pattern in trait's method signature

This use of `mut` was nonsensical for now, but is proposed to be
disallowed by rustc in the future (as a bugfix).

See rust-lang/rust/pull/37378 for context.
2016-10-25 08:05:35 +09:00
bluss 96e96ef762 Remove pattern in trait's method signature
This use of `mut` was nonsensical for now, but is proposed to be
disallowed by rustc in the future (as a bugfix in Rust).
2016-10-25 00:42:44 +02:00
Josh Stone 8d4b7b3a8d derive: bump to 0.1.37 2016-10-14 20:52:24 -07:00
Homu f2aecb591c Auto merge of #236 - cuviper:proc-macro, r=hauleth
derive: update to proc-macro
2016-10-14 03:59:48 +09:00
Josh Stone 97551ade5b derive: update to proc-macro 2016-10-13 10:31:49 -07:00
Homu b6db1eace9 Auto merge of #235 - matklad:minor-corrections, r=cuviper
Minor, style and comment typo

Just a couple of super minor cosmetic corrections.
2016-10-06 01:30:42 +09:00
Aleksey Kladov ec6ce78458 Minor, style and comment typo 2016-10-05 18:47:30 +03:00
Josh Stone f25a3bd51d 0.1.36 bump for num, traits, macros, and the new derive 2016-09-29 23:31:23 -07:00
Homu 019c136b8c Auto merge of #228 - rust-num:fix/num-macros, r=cuviper
Fix `num-macros` `FromPrimitive` implementation

Current solution follow syntax proposed in rust-lang/rfcs#1681.

Tracking issue rust-lang/rust#35900

Close #227

Code broken after change:

- [ ] https://github.com/kdar/gameboy-rs
- [ ] https://github.com/lemonrock/mbedtls
- [ ] https://github.com/timorantalaiho/kelaa
- [ ] https://github.com/dylanede/cef-rs
- [ ] https://github.com/klutzy/aheui-llvm
- [ ] https://github.com/pcwalton/rust-media
- [ ] https://github.com/PistonDevelopers/hematite_server
2016-09-30 14:58:47 +09:00
Łukasz Jan Niemier b7e64074b2
Add new crate num-derive as an new replacement for num-macro 2016-09-28 13:33:13 +02:00
Łukasz Jan Niemier 0c89b893a9
Add compiletest crate to test against invalid derivations 2016-09-27 11:18:27 +02:00
Łukasz Jan Niemier b038b79900
Merge remote-tracking branch 'origin/master' into fix/num-macros 2016-09-26 20:45:49 +02:00
Łukasz Jan Niemier ada17a1793
Update to syn 0.6.0 2016-09-26 20:32:46 +02:00
Homu 338e4799e6 Auto merge of #231 - AtheMathmo:generic-epsilon, r=hauleth
Implementing epsilon function to retrieve EPSILON constant

Hey!

This PR exposes a new `epsilon` function in the `Float` trait so that users can access the `EPSILON` constant on the float types. I figured as this was such a minimal change it was easier to get a PR in offering the change then write up an issue.

For me this is a valuable addition. When writing linear algebra or other optimization routines with generic floats we often want to check if some stopping criteria is reached, often something like: `(a - b).abs() < eps`. Having access to a standard _small value_ would make this a little easier.
2016-09-23 04:25:29 +09:00
James Lucas 381942eb4f Adding default implementation 2016-09-22 19:56:44 +01:00
James Lucas a64cf66f4c Implementing epsilon function to retrieve EPSILON constant 2016-09-18 14:36:44 -07:00
Łukasz Jan Niemier e9768a0a76
Rebase leftovers 2016-09-18 22:45:53 +02:00
Łukasz Jan Niemier 43cfa25426
Add test case for which `syn` currently fails 2016-09-18 22:43:35 +02:00
Łukasz Jan Niemier 11f8289ed4
Fix `num-macros` `FromPrimitive` implementation
Current solution follow syntax proposed in rust-lang/rfcs#1681.

Tracking issue rust-lang/rust#35900

Close #227
2016-09-18 22:43:34 +02:00
Homu a11be641ed Auto merge of #229 - bluss:fix-macros, r=hauleth
Fix num-macros for nightly

Now compatible with rustc 1.13.0-nightly (32571c05c 2016-09-17)
2016-09-19 05:33:27 +09:00
bluss 6cfd6c8d18 Fix num-macros for nightly
Now compatible with rustc 1.13.0-nightly (32571c05c 2016-09-17)
2016-09-18 22:24:38 +02:00
65 changed files with 6494 additions and 12213 deletions

View File

@ -1,16 +0,0 @@
#!/bin/sh
# Use rustup to locally run the same suite of tests as .travis.yml.
# (You should first install/update 1.0.0, beta, and nightly.)
set -ex
for toolchain in 1.0.0 beta nightly; do
run="rustup run $toolchain"
$run cargo build --verbose
$run /usr/bin/env make test
$run $PWD/.travis/test_features.sh
if [ $toolchain = nightly ]; then
$run $PWD/.travis/test_nightly.sh
fi
$run cargo doc
done

View File

@ -1,21 +1,52 @@
language: rust
sudo: false
rust:
- 1.0.0
- 1.8.0
- 1.15.0
- 1.20.0
- 1.26.0 # has_i128
- 1.31.0 # 2018!
- stable
- beta
- nightly
sudo: false
script:
- cargo build --verbose
- make test
- .travis/test_features.sh
- |
[ $TRAVIS_RUST_VERSION != nightly ] || .travis/test_nightly.sh
- cargo doc
after_success: |
[ $TRAVIS_BRANCH = master ] &&
[ $TRAVIS_PULL_REQUEST = false ] &&
[ $TRAVIS_RUST_VERSION = nightly ] &&
ssh-agent .travis/deploy.sh
- ./ci/test_full.sh
matrix:
include:
# i586 presents floating point challenges for lack of SSE/SSE2
- name: "i586"
rust: stable
env: TARGET=i586-unknown-linux-gnu
addons:
apt:
packages:
- gcc-multilib
before_script:
- rustup target add $TARGET
script:
- cargo test --verbose --target $TARGET --all-features
# try a target that doesn't have std at all
- name: "no_std"
rust: stable
env: TARGET=thumbv6m-none-eabi
before_script:
- rustup target add $TARGET
script:
- cargo build --verbose --target $TARGET --no-default-features --features i128
- cargo build --verbose --target $TARGET --no-default-features --features libm
- name: "rustfmt"
rust: 1.31.0
before_script:
- rustup component add rustfmt
script:
- cargo fmt --all -- --check
notifications:
email:
on_success: never
branches:
only:
- master
- next
- staging
- trying

1
.travis/.gitignore vendored
View File

@ -1 +0,0 @@
/deploy

Binary file not shown.

View File

@ -1,12 +0,0 @@
#!/bin/sh
set -ex
cp doc/* target/doc/
pip install ghp-import --user
$HOME/.local/bin/ghp-import -n target/doc
openssl aes-256-cbc -K $encrypted_9e86330b283d_key -iv $encrypted_9e86330b283d_iv -in .travis/deploy.enc -out .travis/deploy -d
chmod 600 .travis/deploy
ssh-add .travis/deploy
git push -qf ssh://git@github.com/${TRAVIS_REPO_SLUG}.git gh-pages

View File

@ -1,7 +0,0 @@
#!/bin/sh
set -ex
for feature in '' bigint rational complex; do
cargo build --verbose --no-default-features --features="$feature"
done

View File

@ -1,14 +0,0 @@
#!/bin/sh
set -ex
cargo bench --verbose
cargo test --verbose --manifest-path=macros/Cargo.toml
# Build test for the serde feature
cargo build --verbose --features "serde"
# Downgrade serde and build test the 0.7.0 channel as well
cargo update -p serde --precise 0.7.0
cargo build --verbose --features "serde"

View File

@ -1,69 +1,28 @@
[package]
authors = ["The Rust Project Developers"]
description = "A collection of numeric types and traits for Rust, including bigint,\ncomplex, rational, range iterators, generic integers, and more!\n"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num"
description = "Numeric traits for generic mathematics"
documentation = "https://docs.rs/num-traits"
homepage = "https://github.com/rust-num/num-traits"
keywords = ["mathematics", "numerics"]
categories = ["algorithms", "science", "no-std"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num"
name = "num"
version = "0.1.35"
repository = "https://github.com/rust-num/num-traits"
name = "num-traits"
version = "0.2.8"
readme = "README.md"
build = "build.rs"
exclude = ["/ci/*", "/.travis.yml", "/bors.toml"]
[[bench]]
name = "bigint"
[[bench]]
harness = false
name = "shootout-pidigits"
[package.metadata.docs.rs]
features = ["std"]
[dependencies]
[dependencies.num-bigint]
optional = true
path = "bigint"
version = "0.1.35"
[dependencies.num-complex]
optional = true
path = "complex"
version = "0.1.35"
[dependencies.num-integer]
path = "./integer"
version = "0.1.32"
[dependencies.num-iter]
optional = false
path = "iter"
version = "0.1.32"
[dependencies.num-rational]
optional = true
path = "rational"
version = "0.1.35"
[dependencies.num-traits]
path = "./traits"
version = "0.1.35"
[dev-dependencies]
[dev-dependencies.rand]
version = "0.3.8"
libm = { version = "0.1.4", optional = true }
[features]
bigint = ["num-bigint"]
complex = ["num-complex"]
rational = ["num-rational"]
default = ["bigint", "complex", "rational", "rustc-serialize"]
default = ["std"]
std = []
i128 = []
serde = [
"num-bigint/serde",
"num-complex/serde",
"num-rational/serde"
]
rustc-serialize = [
"num-bigint/rustc-serialize",
"num-complex/rustc-serialize",
"num-rational/rustc-serialize"
]
[build-dependencies]
autocfg = "0.1.3"

View File

@ -1,14 +0,0 @@
CARGO_CMD ?= cargo
packages = bigint complex integer iter rational traits
test:
$(MAKE) run-all TASK="test"
run-all: $(packages)
$(CARGO_CMD) $(TASK)
$(packages):
$(CARGO_CMD) $(TASK) --manifest-path $@/Cargo.toml
.PHONY: $(packages) test

View File

@ -1,12 +1,11 @@
# num
# num-traits
A collection of numeric types and traits for Rust.
[![crate](https://img.shields.io/crates/v/num-traits.svg)](https://crates.io/crates/num-traits)
[![documentation](https://docs.rs/num-traits/badge.svg)](https://docs.rs/num-traits)
![minimum rustc 1.8](https://img.shields.io/badge/rustc-1.8+-red.svg)
[![Travis status](https://travis-ci.org/rust-num/num-traits.svg?branch=master)](https://travis-ci.org/rust-num/num-traits)
This includes new types for big integers, rationals, and complex numbers,
new traits for generic programming on numeric properties like `Integer,
and generic range iterators.
[Documentation](http://rust-num.github.io/num)
Numeric traits for generic mathematics in Rust.
## Usage
@ -14,11 +13,42 @@ Add this to your `Cargo.toml`:
```toml
[dependencies]
num = "0.1"
num-traits = "0.2"
```
and this to your crate root:
```rust
extern crate num;
extern crate num_traits;
```
## Features
This crate can be used without the standard library (`#![no_std]`) by disabling
the default `std` feature. Use this in `Cargo.toml`:
```toml
[dependencies.num-traits]
version = "0.2"
default-features = false
# features = ["libm"] # <--- Uncomment if you wish to use `Float` and `Real` without `std`
```
The `Float` and `Real` traits are only available when either `std` or `libm` is enabled.
The `libm` feature is only available with Rust 1.31 and later ([see PR #99](https://github.com/rust-num/num-traits/pull/99)).
The `FloatCore` trait is always available. `MulAdd` and `MulAddAssign` for `f32`
and `f64` also require `std` or `libm`, as do implementations of signed and floating-
point exponents in `Pow`.
Implementations for `i128` and `u128` are only available with Rust 1.26 and
later. The build script automatically detects this, but you can make it
mandatory by enabling the `i128` crate feature.
## Releases
Release notes are available in [RELEASES.md](RELEASES.md).
## Compatibility
The `num-traits` crate is tested for rustc 1.8 and greater.

154
RELEASES.md Normal file
View File

@ -0,0 +1,154 @@
# Release 0.2.8 (2019-05-21)
- [Fixed feature detection on `no_std` targets][116].
**Contributors**: @cuviper
[116]: https://github.com/rust-num/num-traits/pull/116
# Release 0.2.7 (2019-05-20)
- [Documented when `CheckedShl` and `CheckedShr` return `None`][90].
- [The new `Zero::set_zero` and `One::set_one`][104] will set values to their
identities in place, possibly optimized better than direct assignment.
- [Documented general features and intentions of `PrimInt`][108].
**Contributors**: @cuviper, @dvdhrm, @ignatenkobrain, @lcnr, @samueltardieu
[90]: https://github.com/rust-num/num-traits/pull/90
[104]: https://github.com/rust-num/num-traits/pull/104
[108]: https://github.com/rust-num/num-traits/pull/108
# Release 0.2.6 (2018-09-13)
- [Documented that `pow(0, 0)` returns `1`][79]. Mathematically, this is not
strictly defined, but the current behavior is a pragmatic choice that has
precedent in Rust `core` for the primitives and in many other languages.
- [The new `WrappingShl` and `WrappingShr` traits][81] will wrap the shift count
if it exceeds the bit size of the type.
**Contributors**: @cuviper, @edmccard, @meltinglava
[79]: https://github.com/rust-num/num-traits/pull/79
[81]: https://github.com/rust-num/num-traits/pull/81
# Release 0.2.5 (2018-06-20)
- [Documentation for `mul_add` now clarifies that it's not always faster.][70]
- [The default methods in `FromPrimitive` and `ToPrimitive` are more robust.][73]
**Contributors**: @cuviper, @frewsxcv
[70]: https://github.com/rust-num/num-traits/pull/70
[73]: https://github.com/rust-num/num-traits/pull/73
# Release 0.2.4 (2018-05-11)
- [Support for 128-bit integers is now automatically detected and enabled.][69]
Setting the `i128` crate feature now causes the build script to panic if such
support is not detected.
**Contributors**: @cuviper
[69]: https://github.com/rust-num/num-traits/pull/69
# Release 0.2.3 (2018-05-10)
- [The new `CheckedNeg` and `CheckedRem` traits][63] perform checked `Neg` and
`Rem`, returning `Some(output)` or `None` on overflow.
- [The `no_std` implementation of `FloatCore::to_degrees` for `f32`][61] now
uses a constant for greater accuracy, mirroring [rust#47919]. (With `std` it
just calls the inherent `f32::to_degrees` in the standard library.)
- [The new `MulAdd` and `MulAddAssign` traits][59] perform a fused multiply-
add. For integer types this is just a convenience, but for floating point
types this produces a more accurate result than the separate operations.
- [All applicable traits are now implemented for 128-bit integers][60] starting
with Rust 1.26, enabled by the new `i128` crate feature. The `FromPrimitive`
and `ToPrimitive` traits now also have corresponding 128-bit methods, which
default to converting via 64-bit integers for compatibility.
**Contributors**: @cuviper, @LEXUGE, @regexident, @vks
[59]: https://github.com/rust-num/num-traits/pull/59
[60]: https://github.com/rust-num/num-traits/pull/60
[61]: https://github.com/rust-num/num-traits/pull/61
[63]: https://github.com/rust-num/num-traits/pull/63
[rust#47919]: https://github.com/rust-lang/rust/pull/47919
# Release 0.2.2 (2018-03-18)
- [Casting from floating point to integers now returns `None` on overflow][52],
avoiding [rustc's undefined behavior][rust-10184]. This applies to the `cast`
function and the traits `NumCast`, `FromPrimitive`, and `ToPrimitive`.
**Contributors**: @apopiak, @cuviper, @dbarella
[52]: https://github.com/rust-num/num-traits/pull/52
[rust-10184]: https://github.com/rust-lang/rust/issues/10184
# Release 0.2.1 (2018-03-01)
- [The new `FloatCore` trait][32] offers a subset of `Float` for `#![no_std]` use.
[This includes everything][41] except the transcendental functions and FMA.
- [The new `Inv` trait][37] returns the multiplicative inverse, or reciprocal.
- [The new `Pow` trait][37] performs exponentiation, much like the existing `pow`
function, but with generic exponent types.
- [The new `One::is_one` method][39] tests if a value equals 1. Implementers
should override this method if there's a more efficient way to check for 1,
rather than comparing with a temporary `one()`.
**Contributors**: @clarcharr, @cuviper, @vks
[32]: https://github.com/rust-num/num-traits/pull/32
[37]: https://github.com/rust-num/num-traits/pull/37
[39]: https://github.com/rust-num/num-traits/pull/39
[41]: https://github.com/rust-num/num-traits/pull/41
# Release 0.2.0 (2018-02-06)
- **breaking change**: [There is now a `std` feature][30], enabled by default, along
with the implication that building *without* this feature makes this a
`#![no_std]` crate.
- The `Float` and `Real` traits are only available when `std` is enabled.
- Otherwise, the API is unchanged, and num-traits 0.1.43 now re-exports its
items from num-traits 0.2 for compatibility (the [semver-trick]).
**Contributors**: @cuviper, @termoshtt, @vks
[semver-trick]: https://github.com/dtolnay/semver-trick
[30]: https://github.com/rust-num/num-traits/pull/30
# Release 0.1.43 (2018-02-06)
- All items are now [re-exported from num-traits 0.2][31] for compatibility.
[31]: https://github.com/rust-num/num-traits/pull/31
# Release 0.1.42 (2018-01-22)
- [num-traits now has its own source repository][num-356] at [rust-num/num-traits][home].
- [`ParseFloatError` now implements `Display`][22].
- [The new `AsPrimitive` trait][17] implements generic casting with the `as` operator.
- [The new `CheckedShl` and `CheckedShr` traits][21] implement generic
support for the `checked_shl` and `checked_shr` methods on primitive integers.
- [The new `Real` trait][23] offers a subset of `Float` functionality that may be applicable to more
types, with a blanket implementation for all existing `T: Float` types.
Thanks to @cuviper, @Enet4, @fabianschuiki, @svartalf, and @yoanlcq for their contributions!
[home]: https://github.com/rust-num/num-traits
[num-356]: https://github.com/rust-num/num/pull/356
[17]: https://github.com/rust-num/num-traits/pull/17
[21]: https://github.com/rust-num/num-traits/pull/21
[22]: https://github.com/rust-num/num-traits/pull/22
[23]: https://github.com/rust-num/num-traits/pull/23
# Prior releases
No prior release notes were kept. Thanks all the same to the many
contributors that have made this crate what it is!

View File

@ -1,252 +0,0 @@
#![feature(test)]
extern crate test;
extern crate num;
extern crate rand;
use std::mem::replace;
use test::Bencher;
use num::{BigInt, BigUint, Zero, One, FromPrimitive};
use num::bigint::RandBigInt;
use rand::{SeedableRng, StdRng};
fn get_rng() -> StdRng {
let seed: &[_] = &[1, 2, 3, 4];
SeedableRng::from_seed(seed)
}
fn multiply_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng();
let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits);
b.iter(|| &x * &y);
}
fn divide_bench(b: &mut Bencher, xbits: usize, ybits: usize) {
let mut rng = get_rng();
let x = rng.gen_bigint(xbits);
let y = rng.gen_bigint(ybits);
b.iter(|| &x / &y);
}
fn factorial(n: usize) -> BigUint {
let mut f: BigUint = One::one();
for i in 1..(n+1) {
let bu: BigUint = FromPrimitive::from_usize(i).unwrap();
f = f * bu;
}
f
}
/// Compute Fibonacci numbers
fn fib(n: usize) -> BigUint {
let mut f0: BigUint = Zero::zero();
let mut f1: BigUint = One::one();
for _ in 0..n {
let f2 = f0 + &f1;
f0 = replace(&mut f1, f2);
}
f0
}
/// Compute Fibonacci numbers with two ops per iteration
/// (add and subtract, like issue #200)
fn fib2(n: usize) -> BigUint {
let mut f0: BigUint = Zero::zero();
let mut f1: BigUint = One::one();
for _ in 0..n {
f1 = f1 + &f0;
f0 = &f1 - f0;
}
f0
}
#[bench]
fn multiply_0(b: &mut Bencher) {
multiply_bench(b, 1 << 8, 1 << 8);
}
#[bench]
fn multiply_1(b: &mut Bencher) {
multiply_bench(b, 1 << 8, 1 << 16);
}
#[bench]
fn multiply_2(b: &mut Bencher) {
multiply_bench(b, 1 << 16, 1 << 16);
}
#[bench]
fn divide_0(b: &mut Bencher) {
divide_bench(b, 1 << 8, 1 << 6);
}
#[bench]
fn divide_1(b: &mut Bencher) {
divide_bench(b, 1 << 12, 1 << 8);
}
#[bench]
fn divide_2(b: &mut Bencher) {
divide_bench(b, 1 << 16, 1 << 12);
}
#[bench]
fn factorial_100(b: &mut Bencher) {
b.iter(|| factorial(100));
}
#[bench]
fn fib_100(b: &mut Bencher) {
b.iter(|| fib(100));
}
#[bench]
fn fib_1000(b: &mut Bencher) {
b.iter(|| fib(1000));
}
#[bench]
fn fib_10000(b: &mut Bencher) {
b.iter(|| fib(10000));
}
#[bench]
fn fib2_100(b: &mut Bencher) {
b.iter(|| fib2(100));
}
#[bench]
fn fib2_1000(b: &mut Bencher) {
b.iter(|| fib2(1000));
}
#[bench]
fn fib2_10000(b: &mut Bencher) {
b.iter(|| fib2(10000));
}
#[bench]
fn fac_to_string(b: &mut Bencher) {
let fac = factorial(100);
b.iter(|| fac.to_string());
}
#[bench]
fn fib_to_string(b: &mut Bencher) {
let fib = fib(100);
b.iter(|| fib.to_string());
}
fn to_str_radix_bench(b: &mut Bencher, radix: u32) {
let mut rng = get_rng();
let x = rng.gen_bigint(1009);
b.iter(|| x.to_str_radix(radix));
}
#[bench]
fn to_str_radix_02(b: &mut Bencher) {
to_str_radix_bench(b, 2);
}
#[bench]
fn to_str_radix_08(b: &mut Bencher) {
to_str_radix_bench(b, 8);
}
#[bench]
fn to_str_radix_10(b: &mut Bencher) {
to_str_radix_bench(b, 10);
}
#[bench]
fn to_str_radix_16(b: &mut Bencher) {
to_str_radix_bench(b, 16);
}
#[bench]
fn to_str_radix_36(b: &mut Bencher) {
to_str_radix_bench(b, 36);
}
fn from_str_radix_bench(b: &mut Bencher, radix: u32) {
use num::Num;
let mut rng = get_rng();
let x = rng.gen_bigint(1009);
let s = x.to_str_radix(radix);
assert_eq!(x, BigInt::from_str_radix(&s, radix).unwrap());
b.iter(|| BigInt::from_str_radix(&s, radix));
}
#[bench]
fn from_str_radix_02(b: &mut Bencher) {
from_str_radix_bench(b, 2);
}
#[bench]
fn from_str_radix_08(b: &mut Bencher) {
from_str_radix_bench(b, 8);
}
#[bench]
fn from_str_radix_10(b: &mut Bencher) {
from_str_radix_bench(b, 10);
}
#[bench]
fn from_str_radix_16(b: &mut Bencher) {
from_str_radix_bench(b, 16);
}
#[bench]
fn from_str_radix_36(b: &mut Bencher) {
from_str_radix_bench(b, 36);
}
#[bench]
fn shl(b: &mut Bencher) {
let n = BigUint::one() << 1000;
b.iter(|| {
let mut m = n.clone();
for i in 0..50 {
m = m << i;
}
})
}
#[bench]
fn shr(b: &mut Bencher) {
let n = BigUint::one() << 2000;
b.iter(|| {
let mut m = n.clone();
for i in 0..50 {
m = m >> i;
}
})
}
#[bench]
fn hash(b: &mut Bencher) {
use std::collections::HashSet;
let mut rng = get_rng();
let v: Vec<BigInt> = (1000..2000).map(|bits| rng.gen_bigint(bits)).collect();
b.iter(|| {
let h: HashSet<&BigInt> = v.iter().collect();
assert_eq!(h.len(), v.len());
});
}
#[bench]
fn pow_bench(b: &mut Bencher) {
b.iter(|| {
let upper = 100_usize;
for i in 2..upper + 1 {
for j in 2..upper + 1 {
let i_big = BigUint::from_usize(i).unwrap();
num::pow(i_big, j);
}
}
});
}

View File

@ -1,131 +0,0 @@
// The Computer Language Benchmarks Game
// http://benchmarksgame.alioth.debian.org/
//
// contributed by the Rust Project Developers
// Copyright (c) 2013-2014 The Rust Project Developers
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// - Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in
// the documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of "The Computer Language Benchmarks Game" nor
// the name of "The Computer Language Shootout Benchmarks" nor the
// names of its contributors may be used to endorse or promote
// products derived from this software without specific prior
// written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
extern crate num;
use std::str::FromStr;
use std::io;
use num::traits::{FromPrimitive, ToPrimitive};
use num::{BigInt, Integer, One, Zero};
struct Context {
numer: BigInt,
accum: BigInt,
denom: BigInt,
}
impl Context {
fn new() -> Context {
Context {
numer: One::one(),
accum: Zero::zero(),
denom: One::one(),
}
}
fn from_i32(i: i32) -> BigInt {
FromPrimitive::from_i32(i).unwrap()
}
fn extract_digit(&self) -> i32 {
if self.numer > self.accum {return -1;}
let (q, r) =
(&self.numer * Context::from_i32(3) + &self.accum)
.div_rem(&self.denom);
if r + &self.numer >= self.denom {return -1;}
q.to_i32().unwrap()
}
fn next_term(&mut self, k: i32) {
let y2 = Context::from_i32(k * 2 + 1);
self.accum = (&self.accum + (&self.numer << 1)) * &y2;
self.numer = &self.numer * Context::from_i32(k);
self.denom = &self.denom * y2;
}
fn eliminate_digit(&mut self, d: i32) {
let d = Context::from_i32(d);
let ten = Context::from_i32(10);
self.accum = (&self.accum - &self.denom * d) * &ten;
self.numer = &self.numer * ten;
}
}
fn pidigits(n: isize, out: &mut io::Write) -> io::Result<()> {
let mut k = 0;
let mut context = Context::new();
for i in 1..(n+1) {
let mut d;
loop {
k += 1;
context.next_term(k);
d = context.extract_digit();
if d != -1 {break;}
}
try!(write!(out, "{}", d));
if i % 10 == 0 { try!(write!(out, "\t:{}\n", i)); }
context.eliminate_digit(d);
}
let m = n % 10;
if m != 0 {
for _ in m..10 { try!(write!(out, " ")); }
try!(write!(out, "\t:{}\n", n));
}
Ok(())
}
const DEFAULT_DIGITS: isize = 512;
fn main() {
let args = std::env::args().collect::<Vec<_>>();
let n = if args.len() < 2 {
DEFAULT_DIGITS
} else if args[1] == "--bench" {
return pidigits(DEFAULT_DIGITS, &mut std::io::sink()).unwrap()
} else {
FromStr::from_str(&args[1]).unwrap()
};
pidigits(n, &mut std::io::stdout()).unwrap();
}

View File

@ -1,35 +0,0 @@
[package]
authors = ["The Rust Project Developers"]
description = "Big integer implementation for Rust"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num"
keywords = ["mathematics", "numerics"]
license = "MIT/Apache-2.0"
name = "num-bigint"
repository = "https://github.com/rust-num/num"
version = "0.1.35"
[dependencies]
[dependencies.num-integer]
path = "../integer"
version = "0.1.32"
[dependencies.num-traits]
path = "../traits"
version = "0.1.32"
[dependencies.rand]
optional = true
version = "0.3.14"
[dependencies.rustc-serialize]
optional = true
version = "0.3.19"
[dependencies.serde]
optional = true
version = ">= 0.7.0, < 0.9.0"
[features]
default = ["rand", "rustc-serialize"]

View File

@ -1,586 +0,0 @@
use std::borrow::Cow;
use std::cmp;
use std::cmp::Ordering::{self, Less, Greater, Equal};
use std::iter::repeat;
use std::mem;
use traits;
use traits::{Zero, One};
use biguint::BigUint;
use bigint::Sign;
use bigint::Sign::{Minus, NoSign, Plus};
#[allow(non_snake_case)]
pub mod big_digit {
/// A `BigDigit` is a `BigUint`'s composing element.
pub type BigDigit = u32;
/// A `DoubleBigDigit` is the internal type used to do the computations. Its
/// size is the double of the size of `BigDigit`.
pub type DoubleBigDigit = u64;
pub const ZERO_BIG_DIGIT: BigDigit = 0;
// `DoubleBigDigit` size dependent
pub const BITS: usize = 32;
pub const BASE: DoubleBigDigit = 1 << BITS;
const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS;
#[inline]
fn get_hi(n: DoubleBigDigit) -> BigDigit {
(n >> BITS) as BigDigit
}
#[inline]
fn get_lo(n: DoubleBigDigit) -> BigDigit {
(n & LO_MASK) as BigDigit
}
/// Split one `DoubleBigDigit` into two `BigDigit`s.
#[inline]
pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
(get_hi(n), get_lo(n))
}
/// Join two `BigDigit`s into one `DoubleBigDigit`
#[inline]
pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
(lo as DoubleBigDigit) | ((hi as DoubleBigDigit) << BITS)
}
}
use big_digit::{BigDigit, DoubleBigDigit};
// Generic functions for add/subtract/multiply with carry/borrow:
// Add with carry:
#[inline]
fn adc(a: BigDigit, b: BigDigit, carry: &mut BigDigit) -> BigDigit {
let (hi, lo) = big_digit::from_doublebigdigit((a as DoubleBigDigit) + (b as DoubleBigDigit) +
(*carry as DoubleBigDigit));
*carry = hi;
lo
}
// Subtract with borrow:
#[inline]
fn sbb(a: BigDigit, b: BigDigit, borrow: &mut BigDigit) -> BigDigit {
let (hi, lo) = big_digit::from_doublebigdigit(big_digit::BASE + (a as DoubleBigDigit) -
(b as DoubleBigDigit) -
(*borrow as DoubleBigDigit));
// hi * (base) + lo == 1*(base) + ai - bi - borrow
// => ai - bi - borrow < 0 <=> hi == 0
*borrow = (hi == 0) as BigDigit;
lo
}
#[inline]
pub fn mac_with_carry(a: BigDigit, b: BigDigit, c: BigDigit, carry: &mut BigDigit) -> BigDigit {
let (hi, lo) = big_digit::from_doublebigdigit((a as DoubleBigDigit) +
(b as DoubleBigDigit) * (c as DoubleBigDigit) +
(*carry as DoubleBigDigit));
*carry = hi;
lo
}
/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
///
/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
/// This is _not_ true for an arbitrary numerator/denominator.
///
/// (This function also matches what the x86 divide instruction does).
#[inline]
fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
debug_assert!(hi < divisor);
let lhs = big_digit::to_doublebigdigit(hi, lo);
let rhs = divisor as DoubleBigDigit;
((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
}
pub fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
let mut rem = 0;
for d in a.data.iter_mut().rev() {
let (q, r) = div_wide(rem, *d, b);
*d = q;
rem = r;
}
(a.normalize(), rem)
}
// Only for the Add impl:
#[must_use]
#[inline]
pub fn __add2(a: &mut [BigDigit], b: &[BigDigit]) -> BigDigit {
debug_assert!(a.len() >= b.len());
let mut carry = 0;
let (a_lo, a_hi) = a.split_at_mut(b.len());
for (a, b) in a_lo.iter_mut().zip(b) {
*a = adc(*a, *b, &mut carry);
}
if carry != 0 {
for a in a_hi {
*a = adc(*a, 0, &mut carry);
if carry == 0 { break }
}
}
carry
}
/// /Two argument addition of raw slices:
/// a += b
///
/// The caller _must_ ensure that a is big enough to store the result - typically this means
/// resizing a to max(a.len(), b.len()) + 1, to fit a possible carry.
pub fn add2(a: &mut [BigDigit], b: &[BigDigit]) {
let carry = __add2(a, b);
debug_assert!(carry == 0);
}
pub fn sub2(a: &mut [BigDigit], b: &[BigDigit]) {
let mut borrow = 0;
let len = cmp::min(a.len(), b.len());
let (a_lo, a_hi) = a.split_at_mut(len);
let (b_lo, b_hi) = b.split_at(len);
for (a, b) in a_lo.iter_mut().zip(b_lo) {
*a = sbb(*a, *b, &mut borrow);
}
if borrow != 0 {
for a in a_hi {
*a = sbb(*a, 0, &mut borrow);
if borrow == 0 { break }
}
}
// note: we're _required_ to fail on underflow
assert!(borrow == 0 && b_hi.iter().all(|x| *x == 0),
"Cannot subtract b from a because b is larger than a.");
}
pub fn sub2rev(a: &[BigDigit], b: &mut [BigDigit]) {
debug_assert!(b.len() >= a.len());
let mut borrow = 0;
let len = cmp::min(a.len(), b.len());
let (a_lo, a_hi) = a.split_at(len);
let (b_lo, b_hi) = b.split_at_mut(len);
for (a, b) in a_lo.iter().zip(b_lo) {
*b = sbb(*a, *b, &mut borrow);
}
assert!(a_hi.is_empty());
// note: we're _required_ to fail on underflow
assert!(borrow == 0 && b_hi.iter().all(|x| *x == 0),
"Cannot subtract b from a because b is larger than a.");
}
pub fn sub_sign(a: &[BigDigit], b: &[BigDigit]) -> (Sign, BigUint) {
// Normalize:
let a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
let b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
match cmp_slice(a, b) {
Greater => {
let mut a = a.to_vec();
sub2(&mut a, b);
(Plus, BigUint::new(a))
}
Less => {
let mut b = b.to_vec();
sub2(&mut b, a);
(Minus, BigUint::new(b))
}
_ => (NoSign, Zero::zero()),
}
}
/// Three argument multiply accumulate:
/// acc += b * c
fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
if c == 0 {
return;
}
let mut b_iter = b.iter();
let mut carry = 0;
for ai in acc.iter_mut() {
if let Some(bi) = b_iter.next() {
*ai = mac_with_carry(*ai, *bi, c, &mut carry);
} else if carry != 0 {
*ai = mac_with_carry(*ai, 0, c, &mut carry);
} else {
break;
}
}
assert!(carry == 0);
}
/// Three argument multiply accumulate:
/// acc += b * c
fn mac3(acc: &mut [BigDigit], b: &[BigDigit], c: &[BigDigit]) {
let (x, y) = if b.len() < c.len() {
(b, c)
} else {
(c, b)
};
// Karatsuba multiplication is slower than long multiplication for small x and y:
//
if x.len() <= 4 {
for (i, xi) in x.iter().enumerate() {
mac_digit(&mut acc[i..], y, *xi);
}
} else {
/*
* Karatsuba multiplication:
*
* The idea is that we break x and y up into two smaller numbers that each have about half
* as many digits, like so (note that multiplying by b is just a shift):
*
* x = x0 + x1 * b
* y = y0 + y1 * b
*
* With some algebra, we can compute x * y with three smaller products, where the inputs to
* each of the smaller products have only about half as many digits as x and y:
*
* x * y = (x0 + x1 * b) * (y0 + y1 * b)
*
* x * y = x0 * y0
* + x0 * y1 * b
* + x1 * y0 * b
* + x1 * y1 * b^2
*
* Let p0 = x0 * y0 and p2 = x1 * y1:
*
* x * y = p0
* + (x0 * y1 + x1 * p0) * b
* + p2 * b^2
*
* The real trick is that middle term:
*
* x0 * y1 + x1 * y0
*
* = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2
*
* = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2
*
* Now we complete the square:
*
* = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2
*
* = -((x1 - x0) * (y1 - y0)) + p0 + p2
*
* Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula:
*
* x * y = p0
* + (p0 + p2 - p1) * b
* + p2 * b^2
*
* Where the three intermediate products are:
*
* p0 = x0 * y0
* p1 = (x1 - x0) * (y1 - y0)
* p2 = x1 * y1
*
* In doing the computation, we take great care to avoid unnecessary temporary variables
* (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a
* bit so we can use the same temporary variable for all the intermediate products:
*
* x * y = p2 * b^2 + p2 * b
* + p0 * b + p0
* - p1 * b
*
* The other trick we use is instead of doing explicit shifts, we slice acc at the
* appropriate offset when doing the add.
*/
/*
* When x is smaller than y, it's significantly faster to pick b such that x is split in
* half, not y:
*/
let b = x.len() / 2;
let (x0, x1) = x.split_at(b);
let (y0, y1) = y.split_at(b);
/*
* We reuse the same BigUint for all the intermediate multiplies and have to size p
* appropriately here: x1.len() >= x0.len and y1.len() >= y0.len():
*/
let len = x1.len() + y1.len() + 1;
let mut p = BigUint { data: vec![0; len] };
// p2 = x1 * y1
mac3(&mut p.data[..], x1, y1);
// Not required, but the adds go faster if we drop any unneeded 0s from the end:
p = p.normalize();
add2(&mut acc[b..], &p.data[..]);
add2(&mut acc[b * 2..], &p.data[..]);
// Zero out p before the next multiply:
p.data.truncate(0);
p.data.extend(repeat(0).take(len));
// p0 = x0 * y0
mac3(&mut p.data[..], x0, y0);
p = p.normalize();
add2(&mut acc[..], &p.data[..]);
add2(&mut acc[b..], &p.data[..]);
// p1 = (x1 - x0) * (y1 - y0)
// We do this one last, since it may be negative and acc can't ever be negative:
let (j0_sign, j0) = sub_sign(x1, x0);
let (j1_sign, j1) = sub_sign(y1, y0);
match j0_sign * j1_sign {
Plus => {
p.data.truncate(0);
p.data.extend(repeat(0).take(len));
mac3(&mut p.data[..], &j0.data[..], &j1.data[..]);
p = p.normalize();
sub2(&mut acc[b..], &p.data[..]);
},
Minus => {
mac3(&mut acc[b..], &j0.data[..], &j1.data[..]);
},
NoSign => (),
}
}
}
pub fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
let len = x.len() + y.len() + 1;
let mut prod = BigUint { data: vec![0; len] };
mac3(&mut prod.data[..], x, y);
prod.normalize()
}
pub fn div_rem(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
if d.is_zero() {
panic!()
}
if u.is_zero() {
return (Zero::zero(), Zero::zero());
}
if *d == One::one() {
return (u.clone(), Zero::zero());
}
// Required or the q_len calculation below can underflow:
match u.cmp(d) {
Less => return (Zero::zero(), u.clone()),
Equal => return (One::one(), Zero::zero()),
Greater => {} // Do nothing
}
// This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
//
// First, normalize the arguments so the highest bit in the highest digit of the divisor is
// set: the main loop uses the highest digit of the divisor for generating guesses, so we
// want it to be the largest number we can efficiently divide by.
//
let shift = d.data.last().unwrap().leading_zeros() as usize;
let mut a = u << shift;
let b = d << shift;
// The algorithm works by incrementally calculating "guesses", q0, for part of the
// remainder. Once we have any number q0 such that q0 * b <= a, we can set
//
// q += q0
// a -= q0 * b
//
// and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
//
// q0, our guess, is calculated by dividing the last few digits of a by the last digit of b
// - this should give us a guess that is "close" to the actual quotient, but is possibly
// greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction
// until we have a guess such that q0 & b <= a.
//
let bn = *b.data.last().unwrap();
let q_len = a.data.len() - b.data.len() + 1;
let mut q = BigUint { data: vec![0; q_len] };
// We reuse the same temporary to avoid hitting the allocator in our inner loop - this is
// sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0
// can be bigger).
//
let mut tmp = BigUint { data: Vec::with_capacity(2) };
for j in (0..q_len).rev() {
/*
* When calculating our next guess q0, we don't need to consider the digits below j
* + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from
* digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those
* two numbers will be zero in all digits up to (j + b.data.len() - 1).
*/
let offset = j + b.data.len() - 1;
if offset >= a.data.len() {
continue;
}
/* just avoiding a heap allocation: */
let mut a0 = tmp;
a0.data.truncate(0);
a0.data.extend(a.data[offset..].iter().cloned());
/*
* q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts
* implicitly at the end, when adding and subtracting to a and q. Not only do we
* save the cost of the shifts, the rest of the arithmetic gets to work with
* smaller numbers.
*/
let (mut q0, _) = div_rem_digit(a0, bn);
let mut prod = &b * &q0;
while cmp_slice(&prod.data[..], &a.data[j..]) == Greater {
let one: BigUint = One::one();
q0 = q0 - one;
prod = prod - &b;
}
add2(&mut q.data[j..], &q0.data[..]);
sub2(&mut a.data[j..], &prod.data[..]);
a = a.normalize();
tmp = q0;
}
debug_assert!(a < b);
(q.normalize(), a >> shift)
}
/// Find last set bit
/// fls(0) == 0, fls(u32::MAX) == 32
pub fn fls<T: traits::PrimInt>(v: T) -> usize {
mem::size_of::<T>() * 8 - v.leading_zeros() as usize
}
pub fn ilog2<T: traits::PrimInt>(v: T) -> usize {
fls(v) - 1
}
#[inline]
pub fn biguint_shl(n: Cow<BigUint>, bits: usize) -> BigUint {
let n_unit = bits / big_digit::BITS;
let mut data = match n_unit {
0 => n.into_owned().data,
_ => {
let len = n_unit + n.data.len() + 1;
let mut data = Vec::with_capacity(len);
data.extend(repeat(0).take(n_unit));
data.extend(n.data.iter().cloned());
data
}
};
let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut carry = 0;
for elem in data[n_unit..].iter_mut() {
let new_carry = *elem >> (big_digit::BITS - n_bits);
*elem = (*elem << n_bits) | carry;
carry = new_carry;
}
if carry != 0 {
data.push(carry);
}
}
BigUint::new(data)
}
#[inline]
pub fn biguint_shr(n: Cow<BigUint>, bits: usize) -> BigUint {
let n_unit = bits / big_digit::BITS;
if n_unit >= n.data.len() {
return Zero::zero();
}
let mut data = match n_unit {
0 => n.into_owned().data,
_ => n.data[n_unit..].to_vec(),
};
let n_bits = bits % big_digit::BITS;
if n_bits > 0 {
let mut borrow = 0;
for elem in data.iter_mut().rev() {
let new_borrow = *elem << (big_digit::BITS - n_bits);
*elem = (*elem >> n_bits) | borrow;
borrow = new_borrow;
}
}
BigUint::new(data)
}
pub fn cmp_slice(a: &[BigDigit], b: &[BigDigit]) -> Ordering {
debug_assert!(a.last() != Some(&0));
debug_assert!(b.last() != Some(&0));
let (a_len, b_len) = (a.len(), b.len());
if a_len < b_len {
return Less;
}
if a_len > b_len {
return Greater;
}
for (&ai, &bi) in a.iter().rev().zip(b.iter().rev()) {
if ai < bi {
return Less;
}
if ai > bi {
return Greater;
}
}
return Equal;
}
#[cfg(test)]
mod algorithm_tests {
use {BigDigit, BigUint, BigInt};
use Sign::Plus;
use traits::Num;
#[test]
fn test_sub_sign() {
use super::sub_sign;
fn sub_sign_i(a: &[BigDigit], b: &[BigDigit]) -> BigInt {
let (sign, val) = sub_sign(a, b);
BigInt::from_biguint(sign, val)
}
let a = BigUint::from_str_radix("265252859812191058636308480000000", 10).unwrap();
let b = BigUint::from_str_radix("26525285981219105863630848000000", 10).unwrap();
let a_i = BigInt::from_biguint(Plus, a.clone());
let b_i = BigInt::from_biguint(Plus, b.clone());
assert_eq!(sub_sign_i(&a.data[..], &b.data[..]), &a_i - &b_i);
assert_eq!(sub_sign_i(&b.data[..], &a.data[..]), &b_i - &a_i);
}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,139 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
//!
//! A `BigUint` is represented as a vector of `BigDigit`s.
//! A `BigInt` is a combination of `BigUint` and `Sign`.
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! ## Example
//!
//! ```rust
//! extern crate num_bigint;
//! extern crate num_traits;
//!
//! # fn main() {
//! use num_bigint::BigUint;
//! use num_traits::{Zero, One};
//! use std::mem::replace;
//!
//! // Calculate large fibonacci numbers.
//! fn fib(n: usize) -> BigUint {
//! let mut f0: BigUint = Zero::zero();
//! let mut f1: BigUint = One::one();
//! for _ in 0..n {
//! let f2 = f0 + &f1;
//! // This is a low cost way of swapping f0 with f1 and f1 with f2.
//! f0 = replace(&mut f1, f2);
//! }
//! f0
//! }
//!
//! // This is a very large number.
//! println!("fib(1000) = {}", fib(1000));
//! # }
//! ```
//!
//! It's easy to generate large random numbers:
//!
//! ```rust
//! extern crate rand;
//! extern crate num_bigint as bigint;
//!
//! # #[cfg(feature = "rand")]
//! # fn main() {
//! use bigint::{ToBigInt, RandBigInt};
//!
//! let mut rng = rand::thread_rng();
//! let a = rng.gen_bigint(1000);
//!
//! let low = -10000.to_bigint().unwrap();
//! let high = 10000.to_bigint().unwrap();
//! let b = rng.gen_bigint_range(&low, &high);
//!
//! // Probably an even larger number.
//! println!("{}", a * b);
//! # }
//!
//! # #[cfg(not(feature = "rand"))]
//! # fn main() {
//! # }
//! ```
#[cfg(any(feature = "rand", test))]
extern crate rand;
#[cfg(feature = "rustc-serialize")]
extern crate rustc_serialize;
#[cfg(feature = "serde")]
extern crate serde;
extern crate num_integer as integer;
extern crate num_traits as traits;
use std::error::Error;
use std::num::ParseIntError;
use std::fmt;
#[derive(Debug, PartialEq)]
pub enum ParseBigIntError {
ParseInt(ParseIntError),
Other,
}
impl fmt::Display for ParseBigIntError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
&ParseBigIntError::ParseInt(ref e) => e.fmt(f),
&ParseBigIntError::Other => "failed to parse provided string".fmt(f),
}
}
}
impl Error for ParseBigIntError {
fn description(&self) -> &str {
"failed to parse bigint/biguint"
}
}
impl From<ParseIntError> for ParseBigIntError {
fn from(err: ParseIntError) -> ParseBigIntError {
ParseBigIntError::ParseInt(err)
}
}
#[cfg(test)]
use std::hash;
#[cfg(test)]
fn hash<T: hash::Hash>(x: &T) -> u64 {
use std::hash::Hasher;
let mut hasher = hash::SipHasher::new();
x.hash(&mut hasher);
hasher.finish()
}
#[macro_use]
mod macros;
mod biguint;
mod bigint;
pub use biguint::BigUint;
pub use biguint::ToBigUint;
pub use biguint::big_digit;
pub use biguint::big_digit::{BigDigit, DoubleBigDigit, ZERO_BIG_DIGIT};
pub use bigint::Sign;
pub use bigint::BigInt;
pub use bigint::ToBigInt;
pub use bigint::RandBigInt;

View File

@ -1,133 +0,0 @@
macro_rules! forward_val_val_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl $imp<$res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to val-ref
$imp::$method(self, &other)
}
}
}
}
macro_rules! forward_val_val_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl $imp<$res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to val-ref, with the larger capacity as val
if self.data.capacity() >= other.data.capacity() {
$imp::$method(self, &other)
} else {
$imp::$method(other, &self)
}
}
}
}
}
macro_rules! forward_ref_val_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<$res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// forward to ref-ref
$imp::$method(self, &other)
}
}
}
}
macro_rules! forward_ref_val_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<$res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: $res) -> $res {
// reverse, forward to val-ref
$imp::$method(other, self)
}
}
}
}
macro_rules! forward_val_ref_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a> $imp<&'a $res> for $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to ref-ref
$imp::$method(&self, other)
}
}
}
}
macro_rules! forward_ref_ref_binop {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to val-ref
$imp::$method(self.clone(), other)
}
}
}
}
macro_rules! forward_ref_ref_binop_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
impl<'a, 'b> $imp<&'b $res> for &'a $res {
type Output = $res;
#[inline]
fn $method(self, other: &$res) -> $res {
// forward to val-ref, choosing the larger to clone
if self.data.len() >= other.data.len() {
$imp::$method(self.clone(), other)
} else {
$imp::$method(other.clone(), self)
}
}
}
}
}
// Forward everything to ref-ref, when reusing storage is not helpful
macro_rules! forward_all_binop_to_ref_ref {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop!(impl $imp for $res, $method);
forward_val_ref_binop!(impl $imp for $res, $method);
forward_ref_val_binop!(impl $imp for $res, $method);
};
}
// Forward everything to val-ref, so LHS storage can be reused
macro_rules! forward_all_binop_to_val_ref {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop!(impl $imp for $res, $method);
forward_ref_val_binop!(impl $imp for $res, $method);
forward_ref_ref_binop!(impl $imp for $res, $method);
};
}
// Forward everything to val-ref, commutatively, so either LHS or RHS storage can be reused
macro_rules! forward_all_binop_to_val_ref_commutative {
(impl $imp:ident for $res:ty, $method:ident) => {
forward_val_val_binop_commutative!(impl $imp for $res, $method);
forward_ref_val_binop_commutative!(impl $imp for $res, $method);
forward_ref_ref_binop_commutative!(impl $imp for $res, $method);
};
}

View File

@ -1,954 +0,0 @@
use {BigDigit, BigUint, big_digit};
use {Sign, BigInt, RandBigInt, ToBigInt};
use Sign::{Minus, NoSign, Plus};
use std::cmp::Ordering::{Less, Equal, Greater};
use std::{f32, f64};
use std::{i8, i16, i32, i64, isize};
use std::iter::repeat;
use std::{u8, u16, u32, u64, usize};
use std::ops::Neg;
use rand::thread_rng;
use integer::Integer;
use traits::{Zero, One, Signed, ToPrimitive, FromPrimitive, Num, Float};
/// Assert that an op works for all val/ref combinations
macro_rules! assert_op {
($left:ident $op:tt $right:ident == $expected:expr) => {
assert_eq!((&$left) $op (&$right), $expected);
assert_eq!((&$left) $op $right.clone(), $expected);
assert_eq!($left.clone() $op (&$right), $expected);
assert_eq!($left.clone() $op $right.clone(), $expected);
};
}
#[test]
fn test_from_biguint() {
fn check(inp_s: Sign, inp_n: usize, ans_s: Sign, ans_n: usize) {
let inp = BigInt::from_biguint(inp_s, FromPrimitive::from_usize(inp_n).unwrap());
let ans = BigInt {
sign: ans_s,
data: FromPrimitive::from_usize(ans_n).unwrap(),
};
assert_eq!(inp, ans);
}
check(Plus, 1, Plus, 1);
check(Plus, 0, NoSign, 0);
check(Minus, 1, Minus, 1);
check(NoSign, 1, NoSign, 0);
}
#[test]
fn test_from_bytes_be() {
fn check(s: &str, result: &str) {
assert_eq!(BigInt::from_bytes_be(Plus, s.as_bytes()),
BigInt::parse_bytes(result.as_bytes(), 10).unwrap());
}
check("A", "65");
check("AA", "16705");
check("AB", "16706");
check("Hello world!", "22405534230753963835153736737");
assert_eq!(BigInt::from_bytes_be(Plus, &[]), Zero::zero());
assert_eq!(BigInt::from_bytes_be(Minus, &[]), Zero::zero());
}
#[test]
fn test_to_bytes_be() {
fn check(s: &str, result: &str) {
let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap();
let (sign, v) = b.to_bytes_be();
assert_eq!((Plus, s.as_bytes()), (sign, &*v));
}
check("A", "65");
check("AA", "16705");
check("AB", "16706");
check("Hello world!", "22405534230753963835153736737");
let b: BigInt = Zero::zero();
assert_eq!(b.to_bytes_be(), (NoSign, vec![0]));
// Test with leading/trailing zero bytes and a full BigDigit of value 0
let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap();
assert_eq!(b.to_bytes_be(), (Plus, vec![1, 0, 0, 0, 0, 0, 0, 2, 0]));
}
#[test]
fn test_from_bytes_le() {
fn check(s: &str, result: &str) {
assert_eq!(BigInt::from_bytes_le(Plus, s.as_bytes()),
BigInt::parse_bytes(result.as_bytes(), 10).unwrap());
}
check("A", "65");
check("AA", "16705");
check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737");
assert_eq!(BigInt::from_bytes_le(Plus, &[]), Zero::zero());
assert_eq!(BigInt::from_bytes_le(Minus, &[]), Zero::zero());
}
#[test]
fn test_to_bytes_le() {
fn check(s: &str, result: &str) {
let b = BigInt::parse_bytes(result.as_bytes(), 10).unwrap();
let (sign, v) = b.to_bytes_le();
assert_eq!((Plus, s.as_bytes()), (sign, &*v));
}
check("A", "65");
check("AA", "16705");
check("BA", "16706");
check("!dlrow olleH", "22405534230753963835153736737");
let b: BigInt = Zero::zero();
assert_eq!(b.to_bytes_le(), (NoSign, vec![0]));
// Test with leading/trailing zero bytes and a full BigDigit of value 0
let b = BigInt::from_str_radix("00010000000000000200", 16).unwrap();
assert_eq!(b.to_bytes_le(), (Plus, vec![0, 2, 0, 0, 0, 0, 0, 0, 1]));
}
#[test]
fn test_cmp() {
let vs: [&[BigDigit]; 4] = [&[2 as BigDigit], &[1, 1], &[2, 1], &[1, 1, 1]];
let mut nums = Vec::new();
for s in vs.iter().rev() {
nums.push(BigInt::from_slice(Minus, *s));
}
nums.push(Zero::zero());
nums.extend(vs.iter().map(|s| BigInt::from_slice(Plus, *s)));
for (i, ni) in nums.iter().enumerate() {
for (j0, nj) in nums[i..].iter().enumerate() {
let j = i + j0;
if i == j {
assert_eq!(ni.cmp(nj), Equal);
assert_eq!(nj.cmp(ni), Equal);
assert_eq!(ni, nj);
assert!(!(ni != nj));
assert!(ni <= nj);
assert!(ni >= nj);
assert!(!(ni < nj));
assert!(!(ni > nj));
} else {
assert_eq!(ni.cmp(nj), Less);
assert_eq!(nj.cmp(ni), Greater);
assert!(!(ni == nj));
assert!(ni != nj);
assert!(ni <= nj);
assert!(!(ni >= nj));
assert!(ni < nj);
assert!(!(ni > nj));
assert!(!(nj <= ni));
assert!(nj >= ni);
assert!(!(nj < ni));
assert!(nj > ni);
}
}
}
}
#[test]
fn test_hash() {
use hash;
let a = BigInt::new(NoSign, vec![]);
let b = BigInt::new(NoSign, vec![0]);
let c = BigInt::new(Plus, vec![1]);
let d = BigInt::new(Plus, vec![1, 0, 0, 0, 0, 0]);
let e = BigInt::new(Plus, vec![0, 0, 0, 0, 0, 1]);
let f = BigInt::new(Minus, vec![1]);
assert!(hash(&a) == hash(&b));
assert!(hash(&b) != hash(&c));
assert!(hash(&c) == hash(&d));
assert!(hash(&d) != hash(&e));
assert!(hash(&c) != hash(&f));
}
#[test]
fn test_convert_i64() {
fn check(b1: BigInt, i: i64) {
let b2: BigInt = FromPrimitive::from_i64(i).unwrap();
assert!(b1 == b2);
assert!(b1.to_i64().unwrap() == i);
}
check(Zero::zero(), 0);
check(One::one(), 1);
check(i64::MIN.to_bigint().unwrap(), i64::MIN);
check(i64::MAX.to_bigint().unwrap(), i64::MAX);
assert_eq!((i64::MAX as u64 + 1).to_bigint().unwrap().to_i64(), None);
assert_eq!(BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3, 4, 5])).to_i64(),
None);
assert_eq!(BigInt::from_biguint(Minus,
BigUint::new(vec![1, 0, 0, 1 << (big_digit::BITS - 1)]))
.to_i64(),
None);
assert_eq!(BigInt::from_biguint(Minus, BigUint::new(vec![1, 2, 3, 4, 5])).to_i64(),
None);
}
#[test]
fn test_convert_u64() {
fn check(b1: BigInt, u: u64) {
let b2: BigInt = FromPrimitive::from_u64(u).unwrap();
assert!(b1 == b2);
assert!(b1.to_u64().unwrap() == u);
}
check(Zero::zero(), 0);
check(One::one(), 1);
check(u64::MIN.to_bigint().unwrap(), u64::MIN);
check(u64::MAX.to_bigint().unwrap(), u64::MAX);
assert_eq!(BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3, 4, 5])).to_u64(),
None);
let max_value: BigUint = FromPrimitive::from_u64(u64::MAX).unwrap();
assert_eq!(BigInt::from_biguint(Minus, max_value).to_u64(), None);
assert_eq!(BigInt::from_biguint(Minus, BigUint::new(vec![1, 2, 3, 4, 5])).to_u64(),
None);
}
#[test]
fn test_convert_f32() {
fn check(b1: &BigInt, f: f32) {
let b2 = BigInt::from_f32(f).unwrap();
assert_eq!(b1, &b2);
assert_eq!(b1.to_f32().unwrap(), f);
let neg_b1 = -b1;
let neg_b2 = BigInt::from_f32(-f).unwrap();
assert_eq!(neg_b1, neg_b2);
assert_eq!(neg_b1.to_f32().unwrap(), -f);
}
check(&BigInt::zero(), 0.0);
check(&BigInt::one(), 1.0);
check(&BigInt::from(u16::MAX), 2.0.powi(16) - 1.0);
check(&BigInt::from(1u64 << 32), 2.0.powi(32));
check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
check(&((BigInt::one() << 100) + (BigInt::one() << 123)),
2.0.powi(100) + 2.0.powi(123));
check(&(BigInt::one() << 127), 2.0.powi(127));
check(&(BigInt::from((1u64 << 24) - 1) << (128 - 24)), f32::MAX);
// keeping all 24 digits with the bits at different offsets to the BigDigits
let x: u32 = 0b00000000101111011111011011011101;
let mut f = x as f32;
let mut b = BigInt::from(x);
for _ in 0..64 {
check(&b, f);
f *= 2.0;
b = b << 1;
}
// this number when rounded to f64 then f32 isn't the same as when rounded straight to f32
let mut n: i64 = 0b0000000000111111111111111111111111011111111111111111111111111111;
assert!((n as f64) as f32 != n as f32);
assert_eq!(BigInt::from(n).to_f32(), Some(n as f32));
n = -n;
assert!((n as f64) as f32 != n as f32);
assert_eq!(BigInt::from(n).to_f32(), Some(n as f32));
// test rounding up with the bits at different offsets to the BigDigits
let mut f = ((1u64 << 25) - 1) as f32;
let mut b = BigInt::from(1u64 << 25);
for _ in 0..64 {
assert_eq!(b.to_f32(), Some(f));
f *= 2.0;
b = b << 1;
}
// rounding
assert_eq!(BigInt::from_f32(-f32::consts::PI),
Some(BigInt::from(-3i32)));
assert_eq!(BigInt::from_f32(-f32::consts::E), Some(BigInt::from(-2i32)));
assert_eq!(BigInt::from_f32(-0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(-0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(-0.0), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(f32::MIN_POSITIVE / 2.0),
Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(f32::MIN_POSITIVE), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f32(f32::consts::E), Some(BigInt::from(2u32)));
assert_eq!(BigInt::from_f32(f32::consts::PI), Some(BigInt::from(3u32)));
// special float values
assert_eq!(BigInt::from_f32(f32::NAN), None);
assert_eq!(BigInt::from_f32(f32::INFINITY), None);
assert_eq!(BigInt::from_f32(f32::NEG_INFINITY), None);
// largest BigInt that will round to a finite f32 value
let big_num = (BigInt::one() << 128) - BigInt::one() - (BigInt::one() << (128 - 25));
assert_eq!(big_num.to_f32(), Some(f32::MAX));
assert_eq!((&big_num + BigInt::one()).to_f32(), None);
assert_eq!((-&big_num).to_f32(), Some(f32::MIN));
assert_eq!(((-&big_num) - BigInt::one()).to_f32(), None);
assert_eq!(((BigInt::one() << 128) - BigInt::one()).to_f32(), None);
assert_eq!((BigInt::one() << 128).to_f32(), None);
assert_eq!((-((BigInt::one() << 128) - BigInt::one())).to_f32(), None);
assert_eq!((-(BigInt::one() << 128)).to_f32(), None);
}
#[test]
fn test_convert_f64() {
fn check(b1: &BigInt, f: f64) {
let b2 = BigInt::from_f64(f).unwrap();
assert_eq!(b1, &b2);
assert_eq!(b1.to_f64().unwrap(), f);
let neg_b1 = -b1;
let neg_b2 = BigInt::from_f64(-f).unwrap();
assert_eq!(neg_b1, neg_b2);
assert_eq!(neg_b1.to_f64().unwrap(), -f);
}
check(&BigInt::zero(), 0.0);
check(&BigInt::one(), 1.0);
check(&BigInt::from(u32::MAX), 2.0.powi(32) - 1.0);
check(&BigInt::from(1u64 << 32), 2.0.powi(32));
check(&BigInt::from_slice(Plus, &[0, 0, 1]), 2.0.powi(64));
check(&((BigInt::one() << 100) + (BigInt::one() << 152)),
2.0.powi(100) + 2.0.powi(152));
check(&(BigInt::one() << 1023), 2.0.powi(1023));
check(&(BigInt::from((1u64 << 53) - 1) << (1024 - 53)), f64::MAX);
// keeping all 53 digits with the bits at different offsets to the BigDigits
let x: u64 = 0b0000000000011110111110110111111101110111101111011111011011011101;
let mut f = x as f64;
let mut b = BigInt::from(x);
for _ in 0..128 {
check(&b, f);
f *= 2.0;
b = b << 1;
}
// test rounding up with the bits at different offsets to the BigDigits
let mut f = ((1u64 << 54) - 1) as f64;
let mut b = BigInt::from(1u64 << 54);
for _ in 0..128 {
assert_eq!(b.to_f64(), Some(f));
f *= 2.0;
b = b << 1;
}
// rounding
assert_eq!(BigInt::from_f64(-f64::consts::PI),
Some(BigInt::from(-3i32)));
assert_eq!(BigInt::from_f64(-f64::consts::E), Some(BigInt::from(-2i32)));
assert_eq!(BigInt::from_f64(-0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(-0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(-0.0), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(f64::MIN_POSITIVE / 2.0),
Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(f64::MIN_POSITIVE), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(0.5), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(0.99999), Some(BigInt::zero()));
assert_eq!(BigInt::from_f64(f64::consts::E), Some(BigInt::from(2u32)));
assert_eq!(BigInt::from_f64(f64::consts::PI), Some(BigInt::from(3u32)));
// special float values
assert_eq!(BigInt::from_f64(f64::NAN), None);
assert_eq!(BigInt::from_f64(f64::INFINITY), None);
assert_eq!(BigInt::from_f64(f64::NEG_INFINITY), None);
// largest BigInt that will round to a finite f64 value
let big_num = (BigInt::one() << 1024) - BigInt::one() - (BigInt::one() << (1024 - 54));
assert_eq!(big_num.to_f64(), Some(f64::MAX));
assert_eq!((&big_num + BigInt::one()).to_f64(), None);
assert_eq!((-&big_num).to_f64(), Some(f64::MIN));
assert_eq!(((-&big_num) - BigInt::one()).to_f64(), None);
assert_eq!(((BigInt::one() << 1024) - BigInt::one()).to_f64(), None);
assert_eq!((BigInt::one() << 1024).to_f64(), None);
assert_eq!((-((BigInt::one() << 1024) - BigInt::one())).to_f64(), None);
assert_eq!((-(BigInt::one() << 1024)).to_f64(), None);
}
#[test]
fn test_convert_to_biguint() {
fn check(n: BigInt, ans_1: BigUint) {
assert_eq!(n.to_biguint().unwrap(), ans_1);
assert_eq!(n.to_biguint().unwrap().to_bigint().unwrap(), n);
}
let zero: BigInt = Zero::zero();
let unsigned_zero: BigUint = Zero::zero();
let positive = BigInt::from_biguint(Plus, BigUint::new(vec![1, 2, 3]));
let negative = -&positive;
check(zero, unsigned_zero);
check(positive, BigUint::new(vec![1, 2, 3]));
assert_eq!(negative.to_biguint(), None);
}
#[test]
fn test_convert_from_uint() {
macro_rules! check {
($ty:ident, $max:expr) => {
assert_eq!(BigInt::from($ty::zero()), BigInt::zero());
assert_eq!(BigInt::from($ty::one()), BigInt::one());
assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one());
assert_eq!(BigInt::from($ty::MAX), $max);
}
}
check!(u8, BigInt::from_slice(Plus, &[u8::MAX as BigDigit]));
check!(u16, BigInt::from_slice(Plus, &[u16::MAX as BigDigit]));
check!(u32, BigInt::from_slice(Plus, &[u32::MAX as BigDigit]));
check!(u64,
BigInt::from_slice(Plus, &[u32::MAX as BigDigit, u32::MAX as BigDigit]));
check!(usize, BigInt::from(usize::MAX as u64));
}
#[test]
fn test_convert_from_int() {
macro_rules! check {
($ty:ident, $min:expr, $max:expr) => {
assert_eq!(BigInt::from($ty::MIN), $min);
assert_eq!(BigInt::from($ty::MIN + $ty::one()), $min + BigInt::one());
assert_eq!(BigInt::from(-$ty::one()), -BigInt::one());
assert_eq!(BigInt::from($ty::zero()), BigInt::zero());
assert_eq!(BigInt::from($ty::one()), BigInt::one());
assert_eq!(BigInt::from($ty::MAX - $ty::one()), $max - BigInt::one());
assert_eq!(BigInt::from($ty::MAX), $max);
}
}
check!(i8,
BigInt::from_slice(Minus, &[1 << 7]),
BigInt::from_slice(Plus, &[i8::MAX as BigDigit]));
check!(i16,
BigInt::from_slice(Minus, &[1 << 15]),
BigInt::from_slice(Plus, &[i16::MAX as BigDigit]));
check!(i32,
BigInt::from_slice(Minus, &[1 << 31]),
BigInt::from_slice(Plus, &[i32::MAX as BigDigit]));
check!(i64,
BigInt::from_slice(Minus, &[0, 1 << 31]),
BigInt::from_slice(Plus, &[u32::MAX as BigDigit, i32::MAX as BigDigit]));
check!(isize,
BigInt::from(isize::MIN as i64),
BigInt::from(isize::MAX as i64));
}
#[test]
fn test_convert_from_biguint() {
assert_eq!(BigInt::from(BigUint::zero()), BigInt::zero());
assert_eq!(BigInt::from(BigUint::one()), BigInt::one());
assert_eq!(BigInt::from(BigUint::from_slice(&[1, 2, 3])),
BigInt::from_slice(Plus, &[1, 2, 3]));
}
const N1: BigDigit = -1i32 as BigDigit;
const N2: BigDigit = -2i32 as BigDigit;
const SUM_TRIPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[(&[], &[], &[]),
(&[], &[1], &[1]),
(&[1], &[1], &[2]),
(&[1], &[1, 1], &[2, 1]),
(&[1], &[N1], &[0, 1]),
(&[1], &[N1, N1], &[0, 0, 1]),
(&[N1, N1], &[N1, N1], &[N2, N1, 1]),
(&[1, 1, 1], &[N1, N1], &[0, 1, 2]),
(&[2, 2, 1], &[N1, N2], &[1, 1, 2])];
#[test]
fn test_add() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
assert_op!(a + b == c);
assert_op!(b + a == c);
assert_op!(c + na == b);
assert_op!(c + nb == a);
assert_op!(a + nc == nb);
assert_op!(b + nc == na);
assert_op!(na + nb == nc);
assert_op!(a + na == Zero::zero());
}
}
#[test]
fn test_sub() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
assert_op!(c - a == b);
assert_op!(c - b == a);
assert_op!(nb - a == nc);
assert_op!(na - b == nc);
assert_op!(b - na == c);
assert_op!(a - nb == c);
assert_op!(nc - na == nb);
assert_op!(a - a == Zero::zero());
}
}
const M: u32 = ::std::u32::MAX;
static MUL_TRIPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[(&[], &[], &[]),
(&[], &[1], &[]),
(&[2], &[], &[]),
(&[1], &[1], &[1]),
(&[2], &[3], &[6]),
(&[1], &[1, 1, 1], &[1, 1, 1]),
(&[1, 2, 3], &[3], &[3, 6, 9]),
(&[1, 1, 1], &[N1], &[N1, N1, N1]),
(&[1, 2, 3], &[N1], &[N1, N2, N2, 2]),
(&[1, 2, 3, 4], &[N1], &[N1, N2, N2, N2, 3]),
(&[N1], &[N1], &[1, N2]),
(&[N1, N1], &[N1], &[1, N1, N2]),
(&[N1, N1, N1], &[N1], &[1, N1, N1, N2]),
(&[N1, N1, N1, N1], &[N1], &[1, N1, N1, N1, N2]),
(&[M / 2 + 1], &[2], &[0, 1]),
(&[0, M / 2 + 1], &[2], &[0, 0, 1]),
(&[1, 2], &[1, 2, 3], &[1, 4, 7, 6]),
(&[N1, N1], &[N1, N1, N1], &[1, 0, N1, N2, N1]),
(&[N1, N1, N1],
&[N1, N1, N1, N1],
&[1, 0, 0, N1, N2, N1, N1]),
(&[0, 0, 1], &[1, 2, 3], &[0, 0, 1, 2, 3]),
(&[0, 0, 1], &[0, 0, 0, 1], &[0, 0, 0, 0, 0, 1])];
static DIV_REM_QUADRUPLES: &'static [(&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit],
&'static [BigDigit])] = &[(&[1], &[2], &[], &[1]),
(&[1, 1], &[2], &[M / 2 + 1], &[1]),
(&[1, 1, 1], &[2], &[M / 2 + 1, M / 2 + 1], &[1]),
(&[0, 1], &[N1], &[1], &[1]),
(&[N1, N1], &[N2], &[2, 1], &[3])];
#[test]
fn test_mul() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let (na, nb, nc) = (-&a, -&b, -&c);
assert_op!(a * b == c);
assert_op!(b * a == c);
assert_op!(na * nb == c);
assert_op!(na * b == nc);
assert_op!(nb * a == nc);
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
assert!(a == &b * &c + &d);
assert!(a == &c * &b + &d);
}
}
#[test]
fn test_div_mod_floor() {
fn check_sub(a: &BigInt, b: &BigInt, ans_d: &BigInt, ans_m: &BigInt) {
let (d, m) = a.div_mod_floor(b);
if !m.is_zero() {
assert_eq!(m.sign, b.sign);
}
assert!(m.abs() <= b.abs());
assert!(*a == b * &d + &m);
assert!(d == *ans_d);
assert!(m == *ans_m);
}
fn check(a: &BigInt, b: &BigInt, d: &BigInt, m: &BigInt) {
if m.is_zero() {
check_sub(a, b, d, m);
check_sub(a, &b.neg(), &d.neg(), m);
check_sub(&a.neg(), b, &d.neg(), m);
check_sub(&a.neg(), &b.neg(), d, m);
} else {
let one: BigInt = One::one();
check_sub(a, b, d, m);
check_sub(a, &b.neg(), &(d.neg() - &one), &(m - b));
check_sub(&a.neg(), b, &(d.neg() - &one), &(b - m));
check_sub(&a.neg(), &b.neg(), d, &m.neg());
}
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if !a.is_zero() {
check(&c, &a, &b, &Zero::zero());
}
if !b.is_zero() {
check(&c, &b, &a, &Zero::zero());
}
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
if !b.is_zero() {
check(&a, &b, &c, &d);
}
}
}
#[test]
fn test_div_rem() {
fn check_sub(a: &BigInt, b: &BigInt, ans_q: &BigInt, ans_r: &BigInt) {
let (q, r) = a.div_rem(b);
if !r.is_zero() {
assert_eq!(r.sign, a.sign);
}
assert!(r.abs() <= b.abs());
assert!(*a == b * &q + &r);
assert!(q == *ans_q);
assert!(r == *ans_r);
let (a, b, ans_q, ans_r) = (a.clone(), b.clone(), ans_q.clone(), ans_r.clone());
assert_op!(a / b == ans_q);
assert_op!(a % b == ans_r);
}
fn check(a: &BigInt, b: &BigInt, q: &BigInt, r: &BigInt) {
check_sub(a, b, q, r);
check_sub(a, &b.neg(), &q.neg(), r);
check_sub(&a.neg(), b, &q.neg(), &r.neg());
check_sub(&a.neg(), &b.neg(), q, &r.neg());
}
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if !a.is_zero() {
check(&c, &a, &b, &Zero::zero());
}
if !b.is_zero() {
check(&c, &b, &a, &Zero::zero());
}
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
if !b.is_zero() {
check(&a, &b, &c, &d);
}
}
}
#[test]
fn test_checked_add() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
assert!(a.checked_add(&b).unwrap() == c);
assert!(b.checked_add(&a).unwrap() == c);
assert!(c.checked_add(&(-&a)).unwrap() == b);
assert!(c.checked_add(&(-&b)).unwrap() == a);
assert!(a.checked_add(&(-&c)).unwrap() == (-&b));
assert!(b.checked_add(&(-&c)).unwrap() == (-&a));
assert!((-&a).checked_add(&(-&b)).unwrap() == (-&c));
assert!(a.checked_add(&(-&a)).unwrap() == Zero::zero());
}
}
#[test]
fn test_checked_sub() {
for elm in SUM_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
assert!(c.checked_sub(&a).unwrap() == b);
assert!(c.checked_sub(&b).unwrap() == a);
assert!((-&b).checked_sub(&a).unwrap() == (-&c));
assert!((-&a).checked_sub(&b).unwrap() == (-&c));
assert!(b.checked_sub(&(-&a)).unwrap() == c);
assert!(a.checked_sub(&(-&b)).unwrap() == c);
assert!((-&c).checked_sub(&(-&a)).unwrap() == (-&b));
assert!(a.checked_sub(&a).unwrap() == Zero::zero());
}
}
#[test]
fn test_checked_mul() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
assert!(a.checked_mul(&b).unwrap() == c);
assert!(b.checked_mul(&a).unwrap() == c);
assert!((-&a).checked_mul(&b).unwrap() == -&c);
assert!((-&b).checked_mul(&a).unwrap() == -&c);
}
for elm in DIV_REM_QUADRUPLES.iter() {
let (a_vec, b_vec, c_vec, d_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
let d = BigInt::from_slice(Plus, d_vec);
assert!(a == b.checked_mul(&c).unwrap() + &d);
assert!(a == c.checked_mul(&b).unwrap() + &d);
}
}
#[test]
fn test_checked_div() {
for elm in MUL_TRIPLES.iter() {
let (a_vec, b_vec, c_vec) = *elm;
let a = BigInt::from_slice(Plus, a_vec);
let b = BigInt::from_slice(Plus, b_vec);
let c = BigInt::from_slice(Plus, c_vec);
if !a.is_zero() {
assert!(c.checked_div(&a).unwrap() == b);
assert!((-&c).checked_div(&(-&a)).unwrap() == b);
assert!((-&c).checked_div(&a).unwrap() == -&b);
}
if !b.is_zero() {
assert!(c.checked_div(&b).unwrap() == a);
assert!((-&c).checked_div(&(-&b)).unwrap() == a);
assert!((-&c).checked_div(&b).unwrap() == -&a);
}
assert!(c.checked_div(&Zero::zero()).is_none());
assert!((-&c).checked_div(&Zero::zero()).is_none());
}
}
#[test]
fn test_gcd() {
fn check(a: isize, b: isize, c: isize) {
let big_a: BigInt = FromPrimitive::from_isize(a).unwrap();
let big_b: BigInt = FromPrimitive::from_isize(b).unwrap();
let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
assert_eq!(big_a.gcd(&big_b), big_c);
}
check(10, 2, 2);
check(10, 3, 1);
check(0, 3, 3);
check(3, 3, 3);
check(56, 42, 14);
check(3, -3, 3);
check(-6, 3, 3);
check(-4, -2, 2);
}
#[test]
fn test_lcm() {
fn check(a: isize, b: isize, c: isize) {
let big_a: BigInt = FromPrimitive::from_isize(a).unwrap();
let big_b: BigInt = FromPrimitive::from_isize(b).unwrap();
let big_c: BigInt = FromPrimitive::from_isize(c).unwrap();
assert_eq!(big_a.lcm(&big_b), big_c);
}
check(1, 0, 0);
check(0, 1, 0);
check(1, 1, 1);
check(-1, 1, 1);
check(1, -1, 1);
check(-1, -1, 1);
check(8, 9, 72);
check(11, 5, 55);
}
#[test]
fn test_abs_sub() {
let zero: BigInt = Zero::zero();
let one: BigInt = One::one();
assert_eq!((-&one).abs_sub(&one), zero);
let one: BigInt = One::one();
let zero: BigInt = Zero::zero();
assert_eq!(one.abs_sub(&one), zero);
let one: BigInt = One::one();
let zero: BigInt = Zero::zero();
assert_eq!(one.abs_sub(&zero), one);
let one: BigInt = One::one();
let two: BigInt = FromPrimitive::from_isize(2).unwrap();
assert_eq!(one.abs_sub(&-&one), two);
}
#[test]
fn test_from_str_radix() {
fn check(s: &str, ans: Option<isize>) {
let ans = ans.map(|n| {
let x: BigInt = FromPrimitive::from_isize(n).unwrap();
x
});
assert_eq!(BigInt::from_str_radix(s, 10).ok(), ans);
}
check("10", Some(10));
check("1", Some(1));
check("0", Some(0));
check("-1", Some(-1));
check("-10", Some(-10));
check("+10", Some(10));
check("--7", None);
check("++5", None);
check("+-9", None);
check("-+3", None);
check("Z", None);
check("_", None);
// issue 10522, this hit an edge case that caused it to
// attempt to allocate a vector of size (-1u) == huge.
let x: BigInt = format!("1{}", repeat("0").take(36).collect::<String>()).parse().unwrap();
let _y = x.to_string();
}
#[test]
fn test_lower_hex() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:x}", a), "a");
assert_eq!(format!("{:x}", hello), "-48656c6c6f20776f726c6421");
assert_eq!(format!("{:♥>+#8x}", a), "♥♥♥♥+0xa");
}
#[test]
fn test_upper_hex() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:X}", a), "A");
assert_eq!(format!("{:X}", hello), "-48656C6C6F20776F726C6421");
assert_eq!(format!("{:♥>+#8X}", a), "♥♥♥♥+0xA");
}
#[test]
fn test_binary() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-224055342307539".as_bytes(), 10).unwrap();
assert_eq!(format!("{:b}", a), "1010");
assert_eq!(format!("{:b}", hello),
"-110010111100011011110011000101101001100011010011");
assert_eq!(format!("{:♥>+#8b}", a), "♥+0b1010");
}
#[test]
fn test_octal() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{:o}", a), "12");
assert_eq!(format!("{:o}", hello), "-22062554330674403566756233062041");
assert_eq!(format!("{:♥>+#8o}", a), "♥♥♥+0o12");
}
#[test]
fn test_display() {
let a = BigInt::parse_bytes(b"A", 16).unwrap();
let hello = BigInt::parse_bytes("-22405534230753963835153736737".as_bytes(), 10).unwrap();
assert_eq!(format!("{}", a), "10");
assert_eq!(format!("{}", hello), "-22405534230753963835153736737");
assert_eq!(format!("{:♥>+#8}", a), "♥♥♥♥♥+10");
}
#[test]
fn test_neg() {
assert!(-BigInt::new(Plus, vec![1, 1, 1]) == BigInt::new(Minus, vec![1, 1, 1]));
assert!(-BigInt::new(Minus, vec![1, 1, 1]) == BigInt::new(Plus, vec![1, 1, 1]));
let zero: BigInt = Zero::zero();
assert_eq!(-&zero, zero);
}
#[test]
fn test_rand() {
let mut rng = thread_rng();
let _n: BigInt = rng.gen_bigint(137);
assert!(rng.gen_bigint(0).is_zero());
}
#[test]
fn test_rand_range() {
let mut rng = thread_rng();
for _ in 0..10 {
assert_eq!(rng.gen_bigint_range(&FromPrimitive::from_usize(236).unwrap(),
&FromPrimitive::from_usize(237).unwrap()),
FromPrimitive::from_usize(236).unwrap());
}
fn check(l: BigInt, u: BigInt) {
let mut rng = thread_rng();
for _ in 0..1000 {
let n: BigInt = rng.gen_bigint_range(&l, &u);
assert!(n >= l);
assert!(n < u);
}
}
let l: BigInt = FromPrimitive::from_usize(403469000 + 2352).unwrap();
let u: BigInt = FromPrimitive::from_usize(403469000 + 3513).unwrap();
check(l.clone(), u.clone());
check(-l.clone(), u.clone());
check(-u.clone(), -l.clone());
}
#[test]
#[should_panic]
fn test_zero_rand_range() {
thread_rng().gen_bigint_range(&FromPrimitive::from_isize(54).unwrap(),
&FromPrimitive::from_isize(54).unwrap());
}
#[test]
#[should_panic]
fn test_negative_rand_range() {
let mut rng = thread_rng();
let l = FromPrimitive::from_usize(2352).unwrap();
let u = FromPrimitive::from_usize(3513).unwrap();
// Switching u and l should fail:
let _n: BigInt = rng.gen_bigint_range(&u, &l);
}

File diff suppressed because it is too large Load Diff

3
bors.toml Normal file
View File

@ -0,0 +1,3 @@
status = [
"continuous-integration/travis-ci/push",
]

14
build.rs Normal file
View File

@ -0,0 +1,14 @@
extern crate autocfg;
use std::env;
fn main() {
let ac = autocfg::new();
if ac.probe_type("i128") {
println!("cargo:rustc-cfg=has_i128");
} else if env::var_os("CARGO_FEATURE_I128").is_some() {
panic!("i128 support was not detected!");
}
autocfg::rerun_path(file!());
}

11
ci/rustup.sh Executable file
View File

@ -0,0 +1,11 @@
#!/bin/sh
# Use rustup to locally run the same suite of tests as .travis.yml.
# (You should first install/update 1.8.0, stable, beta, and nightly.)
set -ex
export TRAVIS_RUST_VERSION
for TRAVIS_RUST_VERSION in 1.8.0 1.15.0 1.20.0 stable beta nightly; do
run="rustup run $TRAVIS_RUST_VERSION"
$run $PWD/ci/test_full.sh
done

27
ci/test_full.sh Executable file
View File

@ -0,0 +1,27 @@
#!/bin/bash
set -ex
echo Testing num-traits on rustc ${TRAVIS_RUST_VERSION}
# num-traits should build and test everywhere.
cargo build --verbose
cargo test --verbose
# test `no_std`
cargo build --verbose --no-default-features
cargo test --verbose --no-default-features
if [[ "$TRAVIS_RUST_VERSION" =~ ^(nightly|beta|stable)$ ]]; then
# test `i128`
cargo build --verbose --features=i128
cargo test --verbose --features=i128
# test with std and libm (libm build fails on Rust 1.26 and earlier)
cargo build --verbose --features "libm"
cargo test --verbose --features "libm"
# test `no_std` with libm (libm build fails on Rust 1.26 and earlier)
cargo build --verbose --no-default-features --features "libm"
cargo test --verbose --no-default-features --features "libm"
fi

View File

@ -1,29 +0,0 @@
[package]
authors = ["The Rust Project Developers"]
description = "Complex numbers implementation for Rust"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num"
keywords = ["mathematics", "numerics"]
license = "MIT/Apache-2.0"
name = "num-complex"
repository = "https://github.com/rust-num/num"
version = "0.1.35"
[dependencies]
[dependencies.num-traits]
optional = false
path = "../traits"
version = "0.1.32"
[dependencies.rustc-serialize]
optional = true
version = "0.3.19"
[dependencies.serde]
optional = true
version = ">= 0.7.0, < 0.9.0"
[features]
default = ["rustc-serialize"]
unstable = []

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

View File

@ -1 +0,0 @@
<meta http-equiv=refresh content=0;url=num/index.html>

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

View File

@ -1,14 +0,0 @@
[package]
authors = ["The Rust Project Developers"]
description = "Integer traits and functions"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num"
keywords = ["mathematics", "numerics"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num"
name = "num-integer"
version = "0.1.32"
[dependencies.num-traits]
path = "../traits"
version = "0.1.32"

View File

@ -1,690 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Integer trait and functions.
extern crate num_traits as traits;
use traits::{Num, Signed};
pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
/// Floored integer division.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert!(( 8).div_floor(& 3) == 2);
/// assert!(( 8).div_floor(&-3) == -3);
/// assert!((-8).div_floor(& 3) == -3);
/// assert!((-8).div_floor(&-3) == 2);
///
/// assert!(( 1).div_floor(& 2) == 0);
/// assert!(( 1).div_floor(&-2) == -1);
/// assert!((-1).div_floor(& 2) == -1);
/// assert!((-1).div_floor(&-2) == 0);
/// ~~~
fn div_floor(&self, other: &Self) -> Self;
/// Floored integer modulo, satisfying:
///
/// ~~~
/// # use num_integer::Integer;
/// # let n = 1; let d = 1;
/// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
/// ~~~
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert!(( 8).mod_floor(& 3) == 2);
/// assert!(( 8).mod_floor(&-3) == -1);
/// assert!((-8).mod_floor(& 3) == 1);
/// assert!((-8).mod_floor(&-3) == -2);
///
/// assert!(( 1).mod_floor(& 2) == 1);
/// assert!(( 1).mod_floor(&-2) == -1);
/// assert!((-1).mod_floor(& 2) == 1);
/// assert!((-1).mod_floor(&-2) == -1);
/// ~~~
fn mod_floor(&self, other: &Self) -> Self;
/// Greatest Common Divisor (GCD).
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(6.gcd(&8), 2);
/// assert_eq!(7.gcd(&3), 1);
/// ~~~
fn gcd(&self, other: &Self) -> Self;
/// Lowest Common Multiple (LCM).
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(7.lcm(&3), 21);
/// assert_eq!(2.lcm(&4), 4);
/// ~~~
fn lcm(&self, other: &Self) -> Self;
/// Deprecated, use `is_multiple_of` instead.
fn divides(&self, other: &Self) -> bool;
/// Returns `true` if `other` is a multiple of `self`.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(9.is_multiple_of(&3), true);
/// assert_eq!(3.is_multiple_of(&9), false);
/// ~~~
fn is_multiple_of(&self, other: &Self) -> bool;
/// Returns `true` if the number is even.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(3.is_even(), false);
/// assert_eq!(4.is_even(), true);
/// ~~~
fn is_even(&self) -> bool;
/// Returns `true` if the number is odd.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(3.is_odd(), true);
/// assert_eq!(4.is_odd(), false);
/// ~~~
fn is_odd(&self) -> bool;
/// Simultaneous truncated integer division and modulus.
/// Returns `(quotient, remainder)`.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(( 8).div_rem( &3), ( 2, 2));
/// assert_eq!(( 8).div_rem(&-3), (-2, 2));
/// assert_eq!((-8).div_rem( &3), (-2, -2));
/// assert_eq!((-8).div_rem(&-3), ( 2, -2));
///
/// assert_eq!(( 1).div_rem( &2), ( 0, 1));
/// assert_eq!(( 1).div_rem(&-2), ( 0, 1));
/// assert_eq!((-1).div_rem( &2), ( 0, -1));
/// assert_eq!((-1).div_rem(&-2), ( 0, -1));
/// ~~~
#[inline]
fn div_rem(&self, other: &Self) -> (Self, Self);
/// Simultaneous floored integer division and modulus.
/// Returns `(quotient, remainder)`.
///
/// # Examples
///
/// ~~~
/// # use num_integer::Integer;
/// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2));
/// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
/// assert_eq!((-8).div_mod_floor( &3), (-3, 1));
/// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2));
///
/// assert_eq!(( 1).div_mod_floor( &2), ( 0, 1));
/// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1));
/// assert_eq!((-1).div_mod_floor( &2), (-1, 1));
/// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1));
/// ~~~
fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
(self.div_floor(other), self.mod_floor(other))
}
}
/// Simultaneous integer division and modulus
#[inline]
pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) {
x.div_rem(&y)
}
/// Floored integer division
#[inline]
pub fn div_floor<T: Integer>(x: T, y: T) -> T {
x.div_floor(&y)
}
/// Floored integer modulus
#[inline]
pub fn mod_floor<T: Integer>(x: T, y: T) -> T {
x.mod_floor(&y)
}
/// Simultaneous floored integer division and modulus
#[inline]
pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) {
x.div_mod_floor(&y)
}
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
/// result is always positive.
#[inline(always)]
pub fn gcd<T: Integer>(x: T, y: T) -> T {
x.gcd(&y)
}
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline(always)]
pub fn lcm<T: Integer>(x: T, y: T) -> T {
x.lcm(&y)
}
macro_rules! impl_integer_for_isize {
($T:ty, $test_mod:ident) => (
impl Integer for $T {
/// Floored integer division
#[inline]
fn div_floor(&self, other: &Self) -> Self {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.div_rem(other) {
(d, r) if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => d - 1,
(d, _) => d,
}
}
/// Floored integer modulo
#[inline]
fn mod_floor(&self, other: &Self) -> Self {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match *self % *other {
r if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => r + *other,
r => r,
}
}
/// Calculates `div_floor` and `mod_floor` simultaneously
#[inline]
fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
// Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
// December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
match self.div_rem(other) {
(d, r) if (r > 0 && *other < 0)
|| (r < 0 && *other > 0) => (d - 1, r + *other),
(d, r) => (d, r),
}
}
/// Calculates the Greatest Common Divisor (GCD) of the number and
/// `other`. The result is always positive.
#[inline]
fn gcd(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 { return (m | n).abs() }
// find common factors of 2
let shift = (m | n).trailing_zeros();
// The algorithm needs positive numbers, but the minimum value
// can't be represented as a positive one.
// It's also a power of two, so the gcd can be
// calculated by bitshifting in that case
// Assuming two's complement, the number created by the shift
// is positive for all numbers except gcd = abs(min value)
// The call to .abs() causes a panic in debug mode
if m == Self::min_value() || n == Self::min_value() {
return (1 << shift).abs()
}
// guaranteed to be positive now, rest like unsigned algorithm
m = m.abs();
n = n.abs();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m { ::std::mem::swap(&mut n, &mut m) }
m -= n;
}
n << shift
}
/// Calculates the Lowest Common Multiple (LCM) of the number and
/// `other`.
#[inline]
fn lcm(&self, other: &Self) -> Self {
// should not have to recalculate abs
(*self * (*other / self.gcd(other))).abs()
}
/// Deprecated, use `is_multiple_of` instead.
#[inline]
fn divides(&self, other: &Self) -> bool {
self.is_multiple_of(other)
}
/// Returns `true` if the number is a multiple of `other`.
#[inline]
fn is_multiple_of(&self, other: &Self) -> bool {
*self % *other == 0
}
/// Returns `true` if the number is divisible by `2`
#[inline]
fn is_even(&self) -> bool { (*self) & 1 == 0 }
/// Returns `true` if the number is not divisible by `2`
#[inline]
fn is_odd(&self) -> bool { !self.is_even() }
/// Simultaneous truncated integer division and modulus.
#[inline]
fn div_rem(&self, other: &Self) -> (Self, Self) {
(*self / *other, *self % *other)
}
}
#[cfg(test)]
mod $test_mod {
use Integer;
/// Checks that the division rule holds for:
///
/// - `n`: numerator (dividend)
/// - `d`: denominator (divisor)
/// - `qr`: quotient and remainder
#[cfg(test)]
fn test_division_rule((n,d): ($T, $T), (q,r): ($T, $T)) {
assert_eq!(d * q + r, n);
}
#[test]
fn test_div_rem() {
fn test_nd_dr(nd: ($T,$T), qr: ($T,$T)) {
let (n,d) = nd;
let separate_div_rem = (n / d, n % d);
let combined_div_rem = n.div_rem(&d);
assert_eq!(separate_div_rem, qr);
assert_eq!(combined_div_rem, qr);
test_division_rule(nd, separate_div_rem);
test_division_rule(nd, combined_div_rem);
}
test_nd_dr(( 8, 3), ( 2, 2));
test_nd_dr(( 8, -3), (-2, 2));
test_nd_dr((-8, 3), (-2, -2));
test_nd_dr((-8, -3), ( 2, -2));
test_nd_dr(( 1, 2), ( 0, 1));
test_nd_dr(( 1, -2), ( 0, 1));
test_nd_dr((-1, 2), ( 0, -1));
test_nd_dr((-1, -2), ( 0, -1));
}
#[test]
fn test_div_mod_floor() {
fn test_nd_dm(nd: ($T,$T), dm: ($T,$T)) {
let (n,d) = nd;
let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
let combined_div_mod_floor = n.div_mod_floor(&d);
assert_eq!(separate_div_mod_floor, dm);
assert_eq!(combined_div_mod_floor, dm);
test_division_rule(nd, separate_div_mod_floor);
test_division_rule(nd, combined_div_mod_floor);
}
test_nd_dm(( 8, 3), ( 2, 2));
test_nd_dm(( 8, -3), (-3, -1));
test_nd_dm((-8, 3), (-3, 1));
test_nd_dm((-8, -3), ( 2, -2));
test_nd_dm(( 1, 2), ( 0, 1));
test_nd_dm(( 1, -2), (-1, -1));
test_nd_dm((-1, 2), (-1, 1));
test_nd_dm((-1, -2), ( 0, -1));
}
#[test]
fn test_gcd() {
assert_eq!((10 as $T).gcd(&2), 2 as $T);
assert_eq!((10 as $T).gcd(&3), 1 as $T);
assert_eq!((0 as $T).gcd(&3), 3 as $T);
assert_eq!((3 as $T).gcd(&3), 3 as $T);
assert_eq!((56 as $T).gcd(&42), 14 as $T);
assert_eq!((3 as $T).gcd(&-3), 3 as $T);
assert_eq!((-6 as $T).gcd(&3), 3 as $T);
assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
}
#[test]
fn test_gcd_cmp_with_euclidean() {
fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
while m != 0 {
::std::mem::swap(&mut m, &mut n);
m %= n;
}
n.abs()
}
// gcd(-128, b) = 128 is not representable as positive value
// for i8
for i in -127..127 {
for j in -127..127 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
}
// last value
// FIXME: Use inclusive ranges for above loop when implemented
let i = 127;
for j in -127..127 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
assert_eq!(127.gcd(&127), 127);
}
#[test]
fn test_gcd_min_val() {
let min = <$T>::min_value();
let max = <$T>::max_value();
let max_pow2 = max / 2 + 1;
assert_eq!(min.gcd(&max), 1 as $T);
assert_eq!(max.gcd(&min), 1 as $T);
assert_eq!(min.gcd(&max_pow2), max_pow2);
assert_eq!(max_pow2.gcd(&min), max_pow2);
assert_eq!(min.gcd(&42), 2 as $T);
assert_eq!((42 as $T).gcd(&min), 2 as $T);
}
#[test]
#[should_panic]
fn test_gcd_min_val_min_val() {
let min = <$T>::min_value();
assert!(min.gcd(&min) >= 0);
}
#[test]
#[should_panic]
fn test_gcd_min_val_0() {
let min = <$T>::min_value();
assert!(min.gcd(&0) >= 0);
}
#[test]
#[should_panic]
fn test_gcd_0_min_val() {
let min = <$T>::min_value();
assert!((0 as $T).gcd(&min) >= 0);
}
#[test]
fn test_lcm() {
assert_eq!((1 as $T).lcm(&0), 0 as $T);
assert_eq!((0 as $T).lcm(&1), 0 as $T);
assert_eq!((1 as $T).lcm(&1), 1 as $T);
assert_eq!((-1 as $T).lcm(&1), 1 as $T);
assert_eq!((1 as $T).lcm(&-1), 1 as $T);
assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
assert_eq!((8 as $T).lcm(&9), 72 as $T);
assert_eq!((11 as $T).lcm(&5), 55 as $T);
}
#[test]
fn test_even() {
assert_eq!((-4 as $T).is_even(), true);
assert_eq!((-3 as $T).is_even(), false);
assert_eq!((-2 as $T).is_even(), true);
assert_eq!((-1 as $T).is_even(), false);
assert_eq!((0 as $T).is_even(), true);
assert_eq!((1 as $T).is_even(), false);
assert_eq!((2 as $T).is_even(), true);
assert_eq!((3 as $T).is_even(), false);
assert_eq!((4 as $T).is_even(), true);
}
#[test]
fn test_odd() {
assert_eq!((-4 as $T).is_odd(), false);
assert_eq!((-3 as $T).is_odd(), true);
assert_eq!((-2 as $T).is_odd(), false);
assert_eq!((-1 as $T).is_odd(), true);
assert_eq!((0 as $T).is_odd(), false);
assert_eq!((1 as $T).is_odd(), true);
assert_eq!((2 as $T).is_odd(), false);
assert_eq!((3 as $T).is_odd(), true);
assert_eq!((4 as $T).is_odd(), false);
}
}
)
}
impl_integer_for_isize!(i8, test_integer_i8);
impl_integer_for_isize!(i16, test_integer_i16);
impl_integer_for_isize!(i32, test_integer_i32);
impl_integer_for_isize!(i64, test_integer_i64);
impl_integer_for_isize!(isize, test_integer_isize);
macro_rules! impl_integer_for_usize {
($T:ty, $test_mod:ident) => (
impl Integer for $T {
/// Unsigned integer division. Returns the same result as `div` (`/`).
#[inline]
fn div_floor(&self, other: &Self) -> Self {
*self / *other
}
/// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
#[inline]
fn mod_floor(&self, other: &Self) -> Self {
*self % *other
}
/// Calculates the Greatest Common Divisor (GCD) of the number and `other`
#[inline]
fn gcd(&self, other: &Self) -> Self {
// Use Stein's algorithm
let mut m = *self;
let mut n = *other;
if m == 0 || n == 0 { return m | n }
// find common factors of 2
let shift = (m | n).trailing_zeros();
// divide n and m by 2 until odd
// m inside loop
n >>= n.trailing_zeros();
while m != 0 {
m >>= m.trailing_zeros();
if n > m { ::std::mem::swap(&mut n, &mut m) }
m -= n;
}
n << shift
}
/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
#[inline]
fn lcm(&self, other: &Self) -> Self {
*self * (*other / self.gcd(other))
}
/// Deprecated, use `is_multiple_of` instead.
#[inline]
fn divides(&self, other: &Self) -> bool {
self.is_multiple_of(other)
}
/// Returns `true` if the number is a multiple of `other`.
#[inline]
fn is_multiple_of(&self, other: &Self) -> bool {
*self % *other == 0
}
/// Returns `true` if the number is divisible by `2`.
#[inline]
fn is_even(&self) -> bool {
*self % 2 == 0
}
/// Returns `true` if the number is not divisible by `2`.
#[inline]
fn is_odd(&self) -> bool {
!self.is_even()
}
/// Simultaneous truncated integer division and modulus.
#[inline]
fn div_rem(&self, other: &Self) -> (Self, Self) {
(*self / *other, *self % *other)
}
}
#[cfg(test)]
mod $test_mod {
use Integer;
#[test]
fn test_div_mod_floor() {
assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
}
#[test]
fn test_gcd() {
assert_eq!((10 as $T).gcd(&2), 2 as $T);
assert_eq!((10 as $T).gcd(&3), 1 as $T);
assert_eq!((0 as $T).gcd(&3), 3 as $T);
assert_eq!((3 as $T).gcd(&3), 3 as $T);
assert_eq!((56 as $T).gcd(&42), 14 as $T);
}
#[test]
fn test_gcd_cmp_with_euclidean() {
fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
while m != 0 {
::std::mem::swap(&mut m, &mut n);
m %= n;
}
n
}
for i in 0..255 {
for j in 0..255 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
}
// last value
// FIXME: Use inclusive ranges for above loop when implemented
let i = 255;
for j in 0..255 {
assert_eq!(euclidean_gcd(i,j), i.gcd(&j));
}
assert_eq!(255.gcd(&255), 255);
}
#[test]
fn test_lcm() {
assert_eq!((1 as $T).lcm(&0), 0 as $T);
assert_eq!((0 as $T).lcm(&1), 0 as $T);
assert_eq!((1 as $T).lcm(&1), 1 as $T);
assert_eq!((8 as $T).lcm(&9), 72 as $T);
assert_eq!((11 as $T).lcm(&5), 55 as $T);
assert_eq!((15 as $T).lcm(&17), 255 as $T);
}
#[test]
fn test_is_multiple_of() {
assert!((6 as $T).is_multiple_of(&(6 as $T)));
assert!((6 as $T).is_multiple_of(&(3 as $T)));
assert!((6 as $T).is_multiple_of(&(1 as $T)));
}
#[test]
fn test_even() {
assert_eq!((0 as $T).is_even(), true);
assert_eq!((1 as $T).is_even(), false);
assert_eq!((2 as $T).is_even(), true);
assert_eq!((3 as $T).is_even(), false);
assert_eq!((4 as $T).is_even(), true);
}
#[test]
fn test_odd() {
assert_eq!((0 as $T).is_odd(), false);
assert_eq!((1 as $T).is_odd(), true);
assert_eq!((2 as $T).is_odd(), false);
assert_eq!((3 as $T).is_odd(), true);
assert_eq!((4 as $T).is_odd(), false);
}
}
)
}
impl_integer_for_usize!(u8, test_integer_u8);
impl_integer_for_usize!(u16, test_integer_u16);
impl_integer_for_usize!(u32, test_integer_u32);
impl_integer_for_usize!(u64, test_integer_u64);
impl_integer_for_usize!(usize, test_integer_usize);
#[test]
fn test_lcm_overflow() {
macro_rules! check {
($t:ty, $x:expr, $y:expr, $r:expr) => { {
let x: $t = $x;
let y: $t = $y;
let o = x.checked_mul(y);
assert!(o.is_none(),
"sanity checking that {} input {} * {} overflows",
stringify!($t), x, y);
assert_eq!(x.lcm(&y), $r);
assert_eq!(y.lcm(&x), $r);
} }
}
// Original bug (Issue #166)
check!(i64, 46656000000000000, 600, 46656000000000000);
check!(i8, 0x40, 0x04, 0x40);
check!(u8, 0x80, 0x02, 0x80);
check!(i16, 0x40_00, 0x04, 0x40_00);
check!(u16, 0x80_00, 0x02, 0x80_00);
check!(i32, 0x4000_0000, 0x04, 0x4000_0000);
check!(u32, 0x8000_0000, 0x02, 0x8000_0000);
check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000);
check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000);
}

View File

@ -1,22 +0,0 @@
[package]
authors = ["The Rust Project Developers"]
description = "External iterators for generic mathematics"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num"
keywords = ["mathematics", "numerics"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num"
name = "num-iter"
version = "0.1.32"
[dependencies]
[dependencies.num-integer]
optional = false
path = "../integer"
version = "0.1.32"
[dependencies.num-traits]
optional = false
path = "../traits"
version = "0.1.32"

View File

@ -1,374 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! External iterators for generic mathematics
extern crate num_traits as traits;
extern crate num_integer as integer;
use integer::Integer;
use traits::{Zero, One, CheckedAdd, ToPrimitive};
use std::ops::{Add, Sub};
/// An iterator over the range [start, stop)
#[derive(Clone)]
pub struct Range<A> {
state: A,
stop: A,
one: A
}
/// Returns an iterator over the given range [start, stop) (that is, starting
/// at start (inclusive), and ending at stop (exclusive)).
///
/// # Example
///
/// ```rust
/// let array = [0, 1, 2, 3, 4];
///
/// for i in num_iter::range(0, 5) {
/// println!("{}", i);
/// assert_eq!(i, array[i]);
/// }
/// ```
#[inline]
pub fn range<A>(start: A, stop: A) -> Range<A>
where A: Add<A, Output = A> + PartialOrd + Clone + One
{
Range{state: start, stop: stop, one: One::one()}
}
// FIXME: rust-lang/rust#10414: Unfortunate type bound
impl<A> Iterator for Range<A>
where A: Add<A, Output = A> + PartialOrd + Clone + ToPrimitive
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
if self.state < self.stop {
let result = self.state.clone();
self.state = self.state.clone() + self.one.clone();
Some(result)
} else {
None
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
// This first checks if the elements are representable as i64. If they aren't, try u64 (to
// handle cases like range(huge, huger)). We don't use usize/int because the difference of
// the i64/u64 might lie within their range.
let bound = match self.state.to_i64() {
Some(a) => {
let sz = self.stop.to_i64().map(|b| b.checked_sub(a));
match sz {
Some(Some(bound)) => bound.to_usize(),
_ => None,
}
},
None => match self.state.to_u64() {
Some(a) => {
let sz = self.stop.to_u64().map(|b| b.checked_sub(a));
match sz {
Some(Some(bound)) => bound.to_usize(),
_ => None
}
},
None => None
}
};
match bound {
Some(b) => (b, Some(b)),
// Standard fallback for unbounded/unrepresentable bounds
None => (0, None)
}
}
}
/// `Integer` is required to ensure the range will be the same regardless of
/// the direction it is consumed.
impl<A> DoubleEndedIterator for Range<A>
where A: Integer + Clone + ToPrimitive
{
#[inline]
fn next_back(&mut self) -> Option<A> {
if self.stop > self.state {
self.stop = self.stop.clone() - self.one.clone();
Some(self.stop.clone())
} else {
None
}
}
}
/// An iterator over the range [start, stop]
#[derive(Clone)]
pub struct RangeInclusive<A> {
range: Range<A>,
done: bool,
}
/// Return an iterator over the range [start, stop]
#[inline]
pub fn range_inclusive<A>(start: A, stop: A) -> RangeInclusive<A>
where A: Add<A, Output = A> + PartialOrd + Clone + One
{
RangeInclusive{range: range(start, stop), done: false}
}
impl<A> Iterator for RangeInclusive<A>
where A: Add<A, Output = A> + PartialOrd + Clone + ToPrimitive
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
match self.range.next() {
Some(x) => Some(x),
None => {
if !self.done && self.range.state == self.range.stop {
self.done = true;
Some(self.range.stop.clone())
} else {
None
}
}
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let (lo, hi) = self.range.size_hint();
if self.done {
(lo, hi)
} else {
let lo = lo.saturating_add(1);
let hi = match hi {
Some(x) => x.checked_add(1),
None => None
};
(lo, hi)
}
}
}
impl<A> DoubleEndedIterator for RangeInclusive<A>
where A: Sub<A, Output = A> + Integer + Clone + ToPrimitive
{
#[inline]
fn next_back(&mut self) -> Option<A> {
if self.range.stop > self.range.state {
let result = self.range.stop.clone();
self.range.stop = self.range.stop.clone() - self.range.one.clone();
Some(result)
} else if !self.done && self.range.state == self.range.stop {
self.done = true;
Some(self.range.stop.clone())
} else {
None
}
}
}
/// An iterator over the range [start, stop) by `step`. It handles overflow by stopping.
#[derive(Clone)]
pub struct RangeStep<A> {
state: A,
stop: A,
step: A,
rev: bool,
}
/// Return an iterator over the range [start, stop) by `step`. It handles overflow by stopping.
#[inline]
pub fn range_step<A>(start: A, stop: A, step: A) -> RangeStep<A>
where A: CheckedAdd + PartialOrd + Clone + Zero
{
let rev = step < Zero::zero();
RangeStep{state: start, stop: stop, step: step, rev: rev}
}
impl<A> Iterator for RangeStep<A>
where A: CheckedAdd + PartialOrd + Clone
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
if (self.rev && self.state > self.stop) || (!self.rev && self.state < self.stop) {
let result = self.state.clone();
match self.state.checked_add(&self.step) {
Some(x) => self.state = x,
None => self.state = self.stop.clone()
}
Some(result)
} else {
None
}
}
}
/// An iterator over the range [start, stop] by `step`. It handles overflow by stopping.
#[derive(Clone)]
pub struct RangeStepInclusive<A> {
state: A,
stop: A,
step: A,
rev: bool,
done: bool,
}
/// Return an iterator over the range [start, stop] by `step`. It handles overflow by stopping.
#[inline]
pub fn range_step_inclusive<A>(start: A, stop: A, step: A) -> RangeStepInclusive<A>
where A: CheckedAdd + PartialOrd + Clone + Zero
{
let rev = step < Zero::zero();
RangeStepInclusive{state: start, stop: stop, step: step, rev: rev, done: false}
}
impl<A> Iterator for RangeStepInclusive<A>
where A: CheckedAdd + PartialOrd + Clone + PartialEq
{
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> {
if !self.done && ((self.rev && self.state >= self.stop) ||
(!self.rev && self.state <= self.stop)) {
let result = self.state.clone();
match self.state.checked_add(&self.step) {
Some(x) => self.state = x,
None => self.done = true
}
Some(result)
} else {
None
}
}
}
#[cfg(test)]
mod tests {
use std::usize;
use std::ops::{Add, Mul};
use std::cmp::Ordering;
use traits::{One, ToPrimitive};
#[test]
fn test_range() {
/// A mock type to check Range when ToPrimitive returns None
struct Foo;
impl ToPrimitive for Foo {
fn to_i64(&self) -> Option<i64> { None }
fn to_u64(&self) -> Option<u64> { None }
}
impl Add<Foo> for Foo {
type Output = Foo;
fn add(self, _: Foo) -> Foo {
Foo
}
}
impl PartialEq for Foo {
fn eq(&self, _: &Foo) -> bool {
true
}
}
impl PartialOrd for Foo {
fn partial_cmp(&self, _: &Foo) -> Option<Ordering> {
None
}
}
impl Clone for Foo {
fn clone(&self) -> Foo {
Foo
}
}
impl Mul<Foo> for Foo {
type Output = Foo;
fn mul(self, _: Foo) -> Foo {
Foo
}
}
impl One for Foo {
fn one() -> Foo {
Foo
}
}
assert!(super::range(0, 5).collect::<Vec<isize>>() == vec![0, 1, 2, 3, 4]);
assert!(super::range(-10, -1).collect::<Vec<isize>>() ==
vec![-10, -9, -8, -7, -6, -5, -4, -3, -2]);
assert!(super::range(0, 5).rev().collect::<Vec<isize>>() == vec![4, 3, 2, 1, 0]);
assert_eq!(super::range(200, -5).count(), 0);
assert_eq!(super::range(200, -5).rev().count(), 0);
assert_eq!(super::range(200, 200).count(), 0);
assert_eq!(super::range(200, 200).rev().count(), 0);
assert_eq!(super::range(0, 100).size_hint(), (100, Some(100)));
// this test is only meaningful when sizeof usize < sizeof u64
assert_eq!(super::range(usize::MAX - 1, usize::MAX).size_hint(), (1, Some(1)));
assert_eq!(super::range(-10, -1).size_hint(), (9, Some(9)));
}
#[test]
fn test_range_inclusive() {
assert!(super::range_inclusive(0, 5).collect::<Vec<isize>>() ==
vec![0, 1, 2, 3, 4, 5]);
assert!(super::range_inclusive(0, 5).rev().collect::<Vec<isize>>() ==
vec![5, 4, 3, 2, 1, 0]);
assert_eq!(super::range_inclusive(200, -5).count(), 0);
assert_eq!(super::range_inclusive(200, -5).rev().count(), 0);
assert!(super::range_inclusive(200, 200).collect::<Vec<isize>>() == vec![200]);
assert!(super::range_inclusive(200, 200).rev().collect::<Vec<isize>>() == vec![200]);
}
#[test]
fn test_range_step() {
assert!(super::range_step(0, 20, 5).collect::<Vec<isize>>() ==
vec![0, 5, 10, 15]);
assert!(super::range_step(20, 0, -5).collect::<Vec<isize>>() ==
vec![20, 15, 10, 5]);
assert!(super::range_step(20, 0, -6).collect::<Vec<isize>>() ==
vec![20, 14, 8, 2]);
assert!(super::range_step(200u8, 255, 50).collect::<Vec<u8>>() ==
vec![200u8, 250]);
assert!(super::range_step(200, -5, 1).collect::<Vec<isize>>() == vec![]);
assert!(super::range_step(200, 200, 1).collect::<Vec<isize>>() == vec![]);
}
#[test]
fn test_range_step_inclusive() {
assert!(super::range_step_inclusive(0, 20, 5).collect::<Vec<isize>>() ==
vec![0, 5, 10, 15, 20]);
assert!(super::range_step_inclusive(20, 0, -5).collect::<Vec<isize>>() ==
vec![20, 15, 10, 5, 0]);
assert!(super::range_step_inclusive(20, 0, -6).collect::<Vec<isize>>() ==
vec![20, 14, 8, 2]);
assert!(super::range_step_inclusive(200u8, 255, 50).collect::<Vec<u8>>() ==
vec![200u8, 250]);
assert!(super::range_step_inclusive(200, -5, 1).collect::<Vec<isize>>() ==
vec![]);
assert!(super::range_step_inclusive(200, 200, 1).collect::<Vec<isize>>() ==
vec![200]);
}
}

View File

@ -1,17 +0,0 @@
[package]
name = "num-macros"
version = "0.1.33"
authors = ["The Rust Project Developers"]
license = "MIT/Apache-2.0"
homepage = "https://github.com/rust-num/num"
repository = "https://github.com/rust-num/num"
documentation = "http://rust-num.github.io/num"
keywords = ["mathematics", "numerics"]
description = "Numeric syntax extensions"
[lib]
name = "num_macros"
plugin = true
[dev-dependencies]
num = { path = "..", version = "0.1" }

View File

@ -1,200 +0,0 @@
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(plugin_registrar, rustc_private)]
extern crate syntax;
extern crate syntax_ext;
extern crate rustc_plugin;
use syntax::ast::{MetaItem, Expr, BinOpKind};
use syntax::ast;
use syntax::codemap::Span;
use syntax::ext::base::{ExtCtxt, Annotatable};
use syntax::ext::build::AstBuilder;
use syntax_ext::deriving::generic::*;
use syntax_ext::deriving::generic::ty::*;
use syntax::parse::token::InternedString;
use syntax::ptr::P;
use syntax::ext::base::MultiDecorator;
use syntax::parse::token;
use rustc_plugin::Registry;
macro_rules! pathvec {
($($x:ident)::+) => (
vec![ $( stringify!($x) ),+ ]
)
}
macro_rules! path {
($($x:tt)*) => (
::syntax_ext::deriving::generic::ty::Path::new( pathvec!( $($x)* ) )
)
}
macro_rules! path_local {
($x:ident) => (
::syntax_ext::deriving::generic::ty::Path::new_local(stringify!($x))
)
}
macro_rules! pathvec_std {
($cx:expr, $first:ident :: $($rest:ident)::+) => ({
let mut v = pathvec!($($rest)::+);
if let Some(s) = $cx.crate_root {
v.insert(0, s);
}
v
})
}
pub fn expand_deriving_from_primitive(cx: &mut ExtCtxt,
span: Span,
mitem: &MetaItem,
item: &Annotatable,
push: &mut FnMut(Annotatable))
{
let inline = cx.meta_word(span, InternedString::new("inline"));
let attrs = vec!(cx.attribute(span, inline));
let trait_def = TraitDef {
is_unsafe: false,
span: span,
attributes: Vec::new(),
path: path!(num::FromPrimitive),
additional_bounds: Vec::new(),
generics: LifetimeBounds::empty(),
methods: vec!(
MethodDef {
name: "from_i64",
is_unsafe: false,
unify_fieldless_variants: false,
generics: LifetimeBounds::empty(),
explicit_self: None,
args: vec!(Literal(path_local!(i64))),
ret_ty: Literal(Path::new_(pathvec_std!(cx, core::option::Option),
None,
vec!(Box::new(Self_)),
true)),
// #[inline] liable to cause code-bloat
attributes: attrs.clone(),
combine_substructure: combine_substructure(Box::new(|c, s, sub| {
cs_from("i64", c, s, sub)
})),
},
MethodDef {
name: "from_u64",
is_unsafe: false,
unify_fieldless_variants: false,
generics: LifetimeBounds::empty(),
explicit_self: None,
args: vec!(Literal(path_local!(u64))),
ret_ty: Literal(Path::new_(pathvec_std!(cx, core::option::Option),
None,
vec!(Box::new(Self_)),
true)),
// #[inline] liable to cause code-bloat
attributes: attrs,
combine_substructure: combine_substructure(Box::new(|c, s, sub| {
cs_from("u64", c, s, sub)
})),
}
),
associated_types: Vec::new(),
};
trait_def.expand(cx, mitem, &item, push)
}
fn cs_from(name: &str, cx: &mut ExtCtxt, trait_span: Span, substr: &Substructure) -> P<Expr> {
if substr.nonself_args.len() != 1 {
cx.span_bug(trait_span, "incorrect number of arguments in `derive(FromPrimitive)`")
}
let n = &substr.nonself_args[0];
match *substr.fields {
StaticStruct(..) => {
cx.span_err(trait_span, "`FromPrimitive` cannot be derived for structs");
return cx.expr_fail(trait_span, InternedString::new(""));
}
StaticEnum(enum_def, _) => {
if enum_def.variants.is_empty() {
cx.span_err(trait_span,
"`FromPrimitive` cannot be derived for enums with no variants");
return cx.expr_fail(trait_span, InternedString::new(""));
}
let mut arms = Vec::new();
for variant in &enum_def.variants {
match variant.node.data {
ast::VariantData::Unit(..) => {
let span = variant.span;
// expr for `$n == $variant as $name`
let path = cx.path(span, vec![substr.type_ident, variant.node.name]);
let variant = cx.expr_path(path);
let ty = cx.ty_ident(span, cx.ident_of(name));
let cast = cx.expr_cast(span, variant.clone(), ty);
let guard = cx.expr_binary(span, BinOpKind::Eq, n.clone(), cast);
// expr for `Some($variant)`
let body = cx.expr_some(span, variant);
// arm for `_ if $guard => $body`
let arm = ast::Arm {
attrs: vec!(),
pats: vec!(cx.pat_wild(span)),
guard: Some(guard),
body: body,
};
arms.push(arm);
}
ast::VariantData::Tuple(..) => {
cx.span_err(trait_span,
"`FromPrimitive` cannot be derived for \
enum variants with arguments");
return cx.expr_fail(trait_span,
InternedString::new(""));
}
ast::VariantData::Struct(..) => {
cx.span_err(trait_span,
"`FromPrimitive` cannot be derived for enums \
with struct variants");
return cx.expr_fail(trait_span,
InternedString::new(""));
}
}
}
// arm for `_ => None`
let arm = ast::Arm {
attrs: vec!(),
pats: vec!(cx.pat_wild(trait_span)),
guard: None,
body: cx.expr_none(trait_span),
};
arms.push(arm);
cx.expr_match(trait_span, n.clone(), arms)
}
_ => cx.span_bug(trait_span, "expected StaticEnum in derive(FromPrimitive)")
}
}
#[plugin_registrar]
#[doc(hidden)]
pub fn plugin_registrar(reg: &mut Registry) {
reg.register_syntax_extension(
token::intern("derive_NumFromPrimitive"),
MultiDecorator(Box::new(expand_deriving_from_primitive)));
}

View File

@ -1,36 +0,0 @@
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(custom_derive, plugin)]
#![plugin(num_macros)]
extern crate num;
#[derive(Debug, PartialEq, NumFromPrimitive)]
enum Color {
Red,
Blue,
Green,
}
#[test]
fn test_from_primitive() {
let v: Vec<Option<Color>> = vec![
num::FromPrimitive::from_u64(0),
num::FromPrimitive::from_u64(1),
num::FromPrimitive::from_u64(2),
num::FromPrimitive::from_u64(3),
];
assert_eq!(
v,
vec![Some(Color::Red), Some(Color::Blue), Some(Color::Green), None]
);
}

View File

@ -1,37 +0,0 @@
[package]
authors = ["The Rust Project Developers"]
description = "Rational numbers implementation for Rust"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num"
keywords = ["mathematics", "numerics"]
license = "MIT/Apache-2.0"
name = "num-rational"
repository = "https://github.com/rust-num/num"
version = "0.1.35"
[dependencies]
[dependencies.num-bigint]
optional = true
path = "../bigint"
version = "0.1.32"
[dependencies.num-integer]
path = "../integer"
version = "0.1.32"
[dependencies.num-traits]
path = "../traits"
version = "0.1.32"
[dependencies.rustc-serialize]
optional = true
version = "0.3.19"
[dependencies.serde]
optional = true
version = ">= 0.7.0, < 0.9.0"
[features]
default = ["bigint", "rustc-serialize"]
bigint = ["num-bigint"]

File diff suppressed because it is too large Load Diff

127
src/bounds.rs Normal file
View File

@ -0,0 +1,127 @@
use core::num::Wrapping;
use core::{f32, f64};
#[cfg(has_i128)]
use core::{i128, u128};
use core::{i16, i32, i64, i8, isize};
use core::{u16, u32, u64, u8, usize};
/// Numbers which have upper and lower bounds
pub trait Bounded {
// FIXME (#5527): These should be associated constants
/// returns the smallest finite number this type can represent
fn min_value() -> Self;
/// returns the largest finite number this type can represent
fn max_value() -> Self;
}
macro_rules! bounded_impl {
($t:ty, $min:expr, $max:expr) => {
impl Bounded for $t {
#[inline]
fn min_value() -> $t {
$min
}
#[inline]
fn max_value() -> $t {
$max
}
}
};
}
bounded_impl!(usize, usize::MIN, usize::MAX);
bounded_impl!(u8, u8::MIN, u8::MAX);
bounded_impl!(u16, u16::MIN, u16::MAX);
bounded_impl!(u32, u32::MIN, u32::MAX);
bounded_impl!(u64, u64::MIN, u64::MAX);
#[cfg(has_i128)]
bounded_impl!(u128, u128::MIN, u128::MAX);
bounded_impl!(isize, isize::MIN, isize::MAX);
bounded_impl!(i8, i8::MIN, i8::MAX);
bounded_impl!(i16, i16::MIN, i16::MAX);
bounded_impl!(i32, i32::MIN, i32::MAX);
bounded_impl!(i64, i64::MIN, i64::MAX);
#[cfg(has_i128)]
bounded_impl!(i128, i128::MIN, i128::MAX);
impl<T: Bounded> Bounded for Wrapping<T> {
fn min_value() -> Self {
Wrapping(T::min_value())
}
fn max_value() -> Self {
Wrapping(T::max_value())
}
}
bounded_impl!(f32, f32::MIN, f32::MAX);
macro_rules! for_each_tuple_ {
( $m:ident !! ) => (
$m! { }
);
( $m:ident !! $h:ident, $($t:ident,)* ) => (
$m! { $h $($t)* }
for_each_tuple_! { $m !! $($t,)* }
);
}
macro_rules! for_each_tuple {
($m:ident) => {
for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
};
}
macro_rules! bounded_tuple {
( $($name:ident)* ) => (
impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
#[inline]
fn min_value() -> Self {
($($name::min_value(),)*)
}
#[inline]
fn max_value() -> Self {
($($name::max_value(),)*)
}
}
);
}
for_each_tuple!(bounded_tuple);
bounded_impl!(f64, f64::MIN, f64::MAX);
#[test]
fn wrapping_bounded() {
macro_rules! test_wrapping_bounded {
($($t:ty)+) => {
$(
assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
)+
};
}
test_wrapping_bounded!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[cfg(has_i128)]
#[test]
fn wrapping_bounded_i128() {
macro_rules! test_wrapping_bounded {
($($t:ty)+) => {
$(
assert_eq!(<Wrapping<$t> as Bounded>::min_value().0, <$t>::min_value());
assert_eq!(<Wrapping<$t> as Bounded>::max_value().0, <$t>::max_value());
)+
};
}
test_wrapping_bounded!(u128 i128);
}
#[test]
fn wrapping_is_bounded() {
fn require_bounded<T: Bounded>(_: &T) {}
require_bounded(&Wrapping(42_u32));
require_bounded(&Wrapping(-42));
}

762
src/cast.rs Normal file
View File

@ -0,0 +1,762 @@
use core::mem::size_of;
use core::num::Wrapping;
use core::{f32, f64};
#[cfg(has_i128)]
use core::{i128, u128};
use core::{i16, i32, i64, i8, isize};
use core::{u16, u32, u64, u8, usize};
use float::FloatCore;
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
/// Converts the value of `self` to an `isize`.
#[inline]
fn to_isize(&self) -> Option<isize> {
self.to_i64().as_ref().and_then(ToPrimitive::to_isize)
}
/// Converts the value of `self` to an `i8`.
#[inline]
fn to_i8(&self) -> Option<i8> {
self.to_i64().as_ref().and_then(ToPrimitive::to_i8)
}
/// Converts the value of `self` to an `i16`.
#[inline]
fn to_i16(&self) -> Option<i16> {
self.to_i64().as_ref().and_then(ToPrimitive::to_i16)
}
/// Converts the value of `self` to an `i32`.
#[inline]
fn to_i32(&self) -> Option<i32> {
self.to_i64().as_ref().and_then(ToPrimitive::to_i32)
}
/// Converts the value of `self` to an `i64`.
fn to_i64(&self) -> Option<i64>;
/// Converts the value of `self` to an `i128`.
///
/// This method is only available with feature `i128` enabled on Rust >= 1.26.
///
/// The default implementation converts through `to_i64()`. Types implementing
/// this trait should override this method if they can represent a greater range.
#[inline]
#[cfg(has_i128)]
fn to_i128(&self) -> Option<i128> {
self.to_i64().map(From::from)
}
/// Converts the value of `self` to a `usize`.
#[inline]
fn to_usize(&self) -> Option<usize> {
self.to_u64().as_ref().and_then(ToPrimitive::to_usize)
}
/// Converts the value of `self` to an `u8`.
#[inline]
fn to_u8(&self) -> Option<u8> {
self.to_u64().as_ref().and_then(ToPrimitive::to_u8)
}
/// Converts the value of `self` to an `u16`.
#[inline]
fn to_u16(&self) -> Option<u16> {
self.to_u64().as_ref().and_then(ToPrimitive::to_u16)
}
/// Converts the value of `self` to an `u32`.
#[inline]
fn to_u32(&self) -> Option<u32> {
self.to_u64().as_ref().and_then(ToPrimitive::to_u32)
}
/// Converts the value of `self` to an `u64`.
#[inline]
fn to_u64(&self) -> Option<u64>;
/// Converts the value of `self` to an `u128`.
///
/// This method is only available with feature `i128` enabled on Rust >= 1.26.
///
/// The default implementation converts through `to_u64()`. Types implementing
/// this trait should override this method if they can represent a greater range.
#[inline]
#[cfg(has_i128)]
fn to_u128(&self) -> Option<u128> {
self.to_u64().map(From::from)
}
/// Converts the value of `self` to an `f32`.
#[inline]
fn to_f32(&self) -> Option<f32> {
self.to_f64().as_ref().and_then(ToPrimitive::to_f32)
}
/// Converts the value of `self` to an `f64`.
#[inline]
fn to_f64(&self) -> Option<f64> {
match self.to_i64() {
Some(i) => i.to_f64(),
None => self.to_u64().as_ref().and_then(ToPrimitive::to_f64),
}
}
}
macro_rules! impl_to_primitive_int_to_int {
($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(&self) -> Option<$DstT> {
let min = $DstT::MIN as $SrcT;
let max = $DstT::MAX as $SrcT;
if size_of::<$SrcT>() <= size_of::<$DstT>() || (min <= *self && *self <= max) {
Some(*self as $DstT)
} else {
None
}
}
)*}
}
macro_rules! impl_to_primitive_int_to_uint {
($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(&self) -> Option<$DstT> {
let max = $DstT::MAX as $SrcT;
if 0 <= *self && (size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max) {
Some(*self as $DstT)
} else {
None
}
}
)*}
}
macro_rules! impl_to_primitive_int {
($T:ident) => {
impl ToPrimitive for $T {
impl_to_primitive_int_to_int! { $T:
fn to_isize -> isize;
fn to_i8 -> i8;
fn to_i16 -> i16;
fn to_i32 -> i32;
fn to_i64 -> i64;
#[cfg(has_i128)]
fn to_i128 -> i128;
}
impl_to_primitive_int_to_uint! { $T:
fn to_usize -> usize;
fn to_u8 -> u8;
fn to_u16 -> u16;
fn to_u32 -> u32;
fn to_u64 -> u64;
#[cfg(has_i128)]
fn to_u128 -> u128;
}
#[inline]
fn to_f32(&self) -> Option<f32> {
Some(*self as f32)
}
#[inline]
fn to_f64(&self) -> Option<f64> {
Some(*self as f64)
}
}
};
}
impl_to_primitive_int!(isize);
impl_to_primitive_int!(i8);
impl_to_primitive_int!(i16);
impl_to_primitive_int!(i32);
impl_to_primitive_int!(i64);
#[cfg(has_i128)]
impl_to_primitive_int!(i128);
macro_rules! impl_to_primitive_uint_to_int {
($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(&self) -> Option<$DstT> {
let max = $DstT::MAX as $SrcT;
if size_of::<$SrcT>() < size_of::<$DstT>() || *self <= max {
Some(*self as $DstT)
} else {
None
}
}
)*}
}
macro_rules! impl_to_primitive_uint_to_uint {
($SrcT:ident : $( $(#[$cfg:meta])* fn $method:ident -> $DstT:ident ; )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(&self) -> Option<$DstT> {
let max = $DstT::MAX as $SrcT;
if size_of::<$SrcT>() <= size_of::<$DstT>() || *self <= max {
Some(*self as $DstT)
} else {
None
}
}
)*}
}
macro_rules! impl_to_primitive_uint {
($T:ident) => {
impl ToPrimitive for $T {
impl_to_primitive_uint_to_int! { $T:
fn to_isize -> isize;
fn to_i8 -> i8;
fn to_i16 -> i16;
fn to_i32 -> i32;
fn to_i64 -> i64;
#[cfg(has_i128)]
fn to_i128 -> i128;
}
impl_to_primitive_uint_to_uint! { $T:
fn to_usize -> usize;
fn to_u8 -> u8;
fn to_u16 -> u16;
fn to_u32 -> u32;
fn to_u64 -> u64;
#[cfg(has_i128)]
fn to_u128 -> u128;
}
#[inline]
fn to_f32(&self) -> Option<f32> {
Some(*self as f32)
}
#[inline]
fn to_f64(&self) -> Option<f64> {
Some(*self as f64)
}
}
};
}
impl_to_primitive_uint!(usize);
impl_to_primitive_uint!(u8);
impl_to_primitive_uint!(u16);
impl_to_primitive_uint!(u32);
impl_to_primitive_uint!(u64);
#[cfg(has_i128)]
impl_to_primitive_uint!(u128);
macro_rules! impl_to_primitive_float_to_float {
($SrcT:ident : $( fn $method:ident -> $DstT:ident ; )*) => {$(
#[inline]
fn $method(&self) -> Option<$DstT> {
// Only finite values that are reducing size need to worry about overflow.
if size_of::<$SrcT>() > size_of::<$DstT>() && FloatCore::is_finite(*self) {
let n = *self as f64;
if n < $DstT::MIN as f64 || n > $DstT::MAX as f64 {
return None;
}
}
// We can safely cast NaN, +-inf, and finite values in range.
Some(*self as $DstT)
}
)*}
}
macro_rules! impl_to_primitive_float_to_signed_int {
($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(&self) -> Option<$i> {
// Float as int truncates toward zero, so we want to allow values
// in the exclusive range `(MIN-1, MAX+1)`.
if size_of::<$f>() > size_of::<$i>() {
// With a larger size, we can represent the range exactly.
const MIN_M1: $f = $i::MIN as $f - 1.0;
const MAX_P1: $f = $i::MAX as $f + 1.0;
if *self > MIN_M1 && *self < MAX_P1 {
return Some(*self as $i);
}
} else {
// We can't represent `MIN-1` exactly, but there's no fractional part
// at this magnitude, so we can just use a `MIN` inclusive boundary.
const MIN: $f = $i::MIN as $f;
// We can't represent `MAX` exactly, but it will round up to exactly
// `MAX+1` (a power of two) when we cast it.
const MAX_P1: $f = $i::MAX as $f;
if *self >= MIN && *self < MAX_P1 {
return Some(*self as $i);
}
}
None
}
)*}
}
macro_rules! impl_to_primitive_float_to_unsigned_int {
($f:ident : $( $(#[$cfg:meta])* fn $method:ident -> $u:ident ; )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(&self) -> Option<$u> {
// Float as int truncates toward zero, so we want to allow values
// in the exclusive range `(-1, MAX+1)`.
if size_of::<$f>() > size_of::<$u>() {
// With a larger size, we can represent the range exactly.
const MAX_P1: $f = $u::MAX as $f + 1.0;
if *self > -1.0 && *self < MAX_P1 {
return Some(*self as $u);
}
} else {
// We can't represent `MAX` exactly, but it will round up to exactly
// `MAX+1` (a power of two) when we cast it.
// (`u128::MAX as f32` is infinity, but this is still ok.)
const MAX_P1: $f = $u::MAX as $f;
if *self > -1.0 && *self < MAX_P1 {
return Some(*self as $u);
}
}
None
}
)*}
}
macro_rules! impl_to_primitive_float {
($T:ident) => {
impl ToPrimitive for $T {
impl_to_primitive_float_to_signed_int! { $T:
fn to_isize -> isize;
fn to_i8 -> i8;
fn to_i16 -> i16;
fn to_i32 -> i32;
fn to_i64 -> i64;
#[cfg(has_i128)]
fn to_i128 -> i128;
}
impl_to_primitive_float_to_unsigned_int! { $T:
fn to_usize -> usize;
fn to_u8 -> u8;
fn to_u16 -> u16;
fn to_u32 -> u32;
fn to_u64 -> u64;
#[cfg(has_i128)]
fn to_u128 -> u128;
}
impl_to_primitive_float_to_float! { $T:
fn to_f32 -> f32;
fn to_f64 -> f64;
}
}
};
}
impl_to_primitive_float!(f32);
impl_to_primitive_float!(f64);
/// A generic trait for converting a number to a value.
pub trait FromPrimitive: Sized {
/// Convert an `isize` to return an optional value of this type. If the
/// value cannot be represented by this value, then `None` is returned.
#[inline]
fn from_isize(n: isize) -> Option<Self> {
n.to_i64().and_then(FromPrimitive::from_i64)
}
/// Convert an `i8` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_i8(n: i8) -> Option<Self> {
FromPrimitive::from_i64(From::from(n))
}
/// Convert an `i16` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_i16(n: i16) -> Option<Self> {
FromPrimitive::from_i64(From::from(n))
}
/// Convert an `i32` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_i32(n: i32) -> Option<Self> {
FromPrimitive::from_i64(From::from(n))
}
/// Convert an `i64` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
fn from_i64(n: i64) -> Option<Self>;
/// Convert an `i128` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
///
/// This method is only available with feature `i128` enabled on Rust >= 1.26.
///
/// The default implementation converts through `from_i64()`. Types implementing
/// this trait should override this method if they can represent a greater range.
#[inline]
#[cfg(has_i128)]
fn from_i128(n: i128) -> Option<Self> {
n.to_i64().and_then(FromPrimitive::from_i64)
}
/// Convert a `usize` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_usize(n: usize) -> Option<Self> {
n.to_u64().and_then(FromPrimitive::from_u64)
}
/// Convert an `u8` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_u8(n: u8) -> Option<Self> {
FromPrimitive::from_u64(From::from(n))
}
/// Convert an `u16` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_u16(n: u16) -> Option<Self> {
FromPrimitive::from_u64(From::from(n))
}
/// Convert an `u32` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_u32(n: u32) -> Option<Self> {
FromPrimitive::from_u64(From::from(n))
}
/// Convert an `u64` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
fn from_u64(n: u64) -> Option<Self>;
/// Convert an `u128` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
///
/// This method is only available with feature `i128` enabled on Rust >= 1.26.
///
/// The default implementation converts through `from_u64()`. Types implementing
/// this trait should override this method if they can represent a greater range.
#[inline]
#[cfg(has_i128)]
fn from_u128(n: u128) -> Option<Self> {
n.to_u64().and_then(FromPrimitive::from_u64)
}
/// Convert a `f32` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_f32(n: f32) -> Option<Self> {
FromPrimitive::from_f64(From::from(n))
}
/// Convert a `f64` to return an optional value of this type. If the
/// type cannot be represented by this value, then `None` is returned.
#[inline]
fn from_f64(n: f64) -> Option<Self> {
match n.to_i64() {
Some(i) => FromPrimitive::from_i64(i),
None => n.to_u64().and_then(FromPrimitive::from_u64),
}
}
}
macro_rules! impl_from_primitive {
($T:ty, $to_ty:ident) => {
#[allow(deprecated)]
impl FromPrimitive for $T {
#[inline]
fn from_isize(n: isize) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_i8(n: i8) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_i16(n: i16) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_i32(n: i32) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_i64(n: i64) -> Option<$T> {
n.$to_ty()
}
#[cfg(has_i128)]
#[inline]
fn from_i128(n: i128) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_usize(n: usize) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_u8(n: u8) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_u16(n: u16) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_u32(n: u32) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_u64(n: u64) -> Option<$T> {
n.$to_ty()
}
#[cfg(has_i128)]
#[inline]
fn from_u128(n: u128) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_f32(n: f32) -> Option<$T> {
n.$to_ty()
}
#[inline]
fn from_f64(n: f64) -> Option<$T> {
n.$to_ty()
}
}
};
}
impl_from_primitive!(isize, to_isize);
impl_from_primitive!(i8, to_i8);
impl_from_primitive!(i16, to_i16);
impl_from_primitive!(i32, to_i32);
impl_from_primitive!(i64, to_i64);
#[cfg(has_i128)]
impl_from_primitive!(i128, to_i128);
impl_from_primitive!(usize, to_usize);
impl_from_primitive!(u8, to_u8);
impl_from_primitive!(u16, to_u16);
impl_from_primitive!(u32, to_u32);
impl_from_primitive!(u64, to_u64);
#[cfg(has_i128)]
impl_from_primitive!(u128, to_u128);
impl_from_primitive!(f32, to_f32);
impl_from_primitive!(f64, to_f64);
macro_rules! impl_to_primitive_wrapping {
($( $(#[$cfg:meta])* fn $method:ident -> $i:ident ; )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(&self) -> Option<$i> {
(self.0).$method()
}
)*}
}
impl<T: ToPrimitive> ToPrimitive for Wrapping<T> {
impl_to_primitive_wrapping! {
fn to_isize -> isize;
fn to_i8 -> i8;
fn to_i16 -> i16;
fn to_i32 -> i32;
fn to_i64 -> i64;
#[cfg(has_i128)]
fn to_i128 -> i128;
fn to_usize -> usize;
fn to_u8 -> u8;
fn to_u16 -> u16;
fn to_u32 -> u32;
fn to_u64 -> u64;
#[cfg(has_i128)]
fn to_u128 -> u128;
fn to_f32 -> f32;
fn to_f64 -> f64;
}
}
macro_rules! impl_from_primitive_wrapping {
($( $(#[$cfg:meta])* fn $method:ident ( $i:ident ); )*) => {$(
#[inline]
$(#[$cfg])*
fn $method(n: $i) -> Option<Self> {
T::$method(n).map(Wrapping)
}
)*}
}
impl<T: FromPrimitive> FromPrimitive for Wrapping<T> {
impl_from_primitive_wrapping! {
fn from_isize(isize);
fn from_i8(i8);
fn from_i16(i16);
fn from_i32(i32);
fn from_i64(i64);
#[cfg(has_i128)]
fn from_i128(i128);
fn from_usize(usize);
fn from_u8(u8);
fn from_u16(u16);
fn from_u32(u32);
fn from_u64(u64);
#[cfg(has_i128)]
fn from_u128(u128);
fn from_f32(f32);
fn from_f64(f64);
}
}
/// Cast from one machine scalar to another.
///
/// # Examples
///
/// ```
/// # use num_traits as num;
/// let twenty: f32 = num::cast(0x14).unwrap();
/// assert_eq!(twenty, 20f32);
/// ```
///
#[inline]
pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
NumCast::from(n)
}
/// An interface for casting between machine scalars.
pub trait NumCast: Sized + ToPrimitive {
/// Creates a number from another value that can be converted into
/// a primitive via the `ToPrimitive` trait.
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
}
macro_rules! impl_num_cast {
($T:ty, $conv:ident) => {
impl NumCast for $T {
#[inline]
#[allow(deprecated)]
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
// `$conv` could be generated using `concat_idents!`, but that
// macro seems to be broken at the moment
n.$conv()
}
}
};
}
impl_num_cast!(u8, to_u8);
impl_num_cast!(u16, to_u16);
impl_num_cast!(u32, to_u32);
impl_num_cast!(u64, to_u64);
#[cfg(has_i128)]
impl_num_cast!(u128, to_u128);
impl_num_cast!(usize, to_usize);
impl_num_cast!(i8, to_i8);
impl_num_cast!(i16, to_i16);
impl_num_cast!(i32, to_i32);
impl_num_cast!(i64, to_i64);
#[cfg(has_i128)]
impl_num_cast!(i128, to_i128);
impl_num_cast!(isize, to_isize);
impl_num_cast!(f32, to_f32);
impl_num_cast!(f64, to_f64);
impl<T: NumCast> NumCast for Wrapping<T> {
fn from<U: ToPrimitive>(n: U) -> Option<Self> {
T::from(n).map(Wrapping)
}
}
/// A generic interface for casting between machine scalars with the
/// `as` operator, which admits narrowing and precision loss.
/// Implementers of this trait `AsPrimitive` should behave like a primitive
/// numeric type (e.g. a newtype around another primitive), and the
/// intended conversion must never fail.
///
/// # Examples
///
/// ```
/// # use num_traits::AsPrimitive;
/// let three: i32 = (3.14159265f32).as_();
/// assert_eq!(three, 3);
/// ```
///
/// # Safety
///
/// Currently, some uses of the `as` operator are not entirely safe.
/// In particular, it is undefined behavior if:
///
/// - A truncated floating point value cannot fit in the target integer
/// type ([#10184](https://github.com/rust-lang/rust/issues/10184));
///
/// ```ignore
/// # use num_traits::AsPrimitive;
/// let x: u8 = (1.04E+17).as_(); // UB
/// ```
///
/// - Or a floating point value does not fit in another floating
/// point type ([#15536](https://github.com/rust-lang/rust/issues/15536)).
///
/// ```ignore
/// # use num_traits::AsPrimitive;
/// let x: f32 = (1e300f64).as_(); // UB
/// ```
///
pub trait AsPrimitive<T>: 'static + Copy
where
T: 'static + Copy,
{
/// Convert a value to another, using the `as` operator.
fn as_(self) -> T;
}
macro_rules! impl_as_primitive {
(@ $T: ty => $(#[$cfg:meta])* impl $U: ty ) => {
$(#[$cfg])*
impl AsPrimitive<$U> for $T {
#[inline] fn as_(self) -> $U { self as $U }
}
};
(@ $T: ty => { $( $U: ty ),* } ) => {$(
impl_as_primitive!(@ $T => impl $U);
)*};
($T: ty => { $( $U: ty ),* } ) => {
impl_as_primitive!(@ $T => { $( $U ),* });
impl_as_primitive!(@ $T => { u8, u16, u32, u64, usize });
impl_as_primitive!(@ $T => #[cfg(has_i128)] impl u128);
impl_as_primitive!(@ $T => { i8, i16, i32, i64, isize });
impl_as_primitive!(@ $T => #[cfg(has_i128)] impl i128);
};
}
impl_as_primitive!(u8 => { char, f32, f64 });
impl_as_primitive!(i8 => { f32, f64 });
impl_as_primitive!(u16 => { f32, f64 });
impl_as_primitive!(i16 => { f32, f64 });
impl_as_primitive!(u32 => { f32, f64 });
impl_as_primitive!(i32 => { f32, f64 });
impl_as_primitive!(u64 => { f32, f64 });
impl_as_primitive!(i64 => { f32, f64 });
#[cfg(has_i128)]
impl_as_primitive!(u128 => { f32, f64 });
#[cfg(has_i128)]
impl_as_primitive!(i128 => { f32, f64 });
impl_as_primitive!(usize => { f32, f64 });
impl_as_primitive!(isize => { f32, f64 });
impl_as_primitive!(f32 => { f32, f64 });
impl_as_primitive!(f64 => { f32, f64 });
impl_as_primitive!(char => { char });
impl_as_primitive!(bool => {});

2119
src/float.rs Normal file

File diff suppressed because it is too large Load Diff

207
src/identities.rs Normal file
View File

@ -0,0 +1,207 @@
use core::num::Wrapping;
use core::ops::{Add, Mul};
/// Defines an additive identity element for `Self`.
///
/// # Laws
///
/// ```{.text}
/// a + 0 = a ∀ a ∈ Self
/// 0 + a = a ∀ a ∈ Self
/// ```
pub trait Zero: Sized + Add<Self, Output = Self> {
/// Returns the additive identity element of `Self`, `0`.
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// This cannot be an associated constant, because of bignums.
fn zero() -> Self;
/// Sets `self` to the additive identity element of `Self`, `0`.
fn set_zero(&mut self) {
*self = Zero::zero();
}
/// Returns `true` if `self` is equal to the additive identity.
#[inline]
fn is_zero(&self) -> bool;
}
macro_rules! zero_impl {
($t:ty, $v:expr) => {
impl Zero for $t {
#[inline]
fn zero() -> $t {
$v
}
#[inline]
fn is_zero(&self) -> bool {
*self == $v
}
}
};
}
zero_impl!(usize, 0);
zero_impl!(u8, 0);
zero_impl!(u16, 0);
zero_impl!(u32, 0);
zero_impl!(u64, 0);
#[cfg(has_i128)]
zero_impl!(u128, 0);
zero_impl!(isize, 0);
zero_impl!(i8, 0);
zero_impl!(i16, 0);
zero_impl!(i32, 0);
zero_impl!(i64, 0);
#[cfg(has_i128)]
zero_impl!(i128, 0);
zero_impl!(f32, 0.0);
zero_impl!(f64, 0.0);
impl<T: Zero> Zero for Wrapping<T>
where
Wrapping<T>: Add<Output = Wrapping<T>>,
{
fn is_zero(&self) -> bool {
self.0.is_zero()
}
fn set_zero(&mut self) {
self.0.set_zero();
}
fn zero() -> Self {
Wrapping(T::zero())
}
}
/// Defines a multiplicative identity element for `Self`.
///
/// # Laws
///
/// ```{.text}
/// a * 1 = a ∀ a ∈ Self
/// 1 * a = a ∀ a ∈ Self
/// ```
pub trait One: Sized + Mul<Self, Output = Self> {
/// Returns the multiplicative identity element of `Self`, `1`.
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// This cannot be an associated constant, because of bignums.
fn one() -> Self;
/// Sets `self` to the multiplicative identity element of `Self`, `1`.
fn set_one(&mut self) {
*self = One::one();
}
/// Returns `true` if `self` is equal to the multiplicative identity.
///
/// For performance reasons, it's best to implement this manually.
/// After a semver bump, this method will be required, and the
/// `where Self: PartialEq` bound will be removed.
#[inline]
fn is_one(&self) -> bool
where
Self: PartialEq,
{
*self == Self::one()
}
}
macro_rules! one_impl {
($t:ty, $v:expr) => {
impl One for $t {
#[inline]
fn one() -> $t {
$v
}
#[inline]
fn is_one(&self) -> bool {
*self == $v
}
}
};
}
one_impl!(usize, 1);
one_impl!(u8, 1);
one_impl!(u16, 1);
one_impl!(u32, 1);
one_impl!(u64, 1);
#[cfg(has_i128)]
one_impl!(u128, 1);
one_impl!(isize, 1);
one_impl!(i8, 1);
one_impl!(i16, 1);
one_impl!(i32, 1);
one_impl!(i64, 1);
#[cfg(has_i128)]
one_impl!(i128, 1);
one_impl!(f32, 1.0);
one_impl!(f64, 1.0);
impl<T: One> One for Wrapping<T>
where
Wrapping<T>: Mul<Output = Wrapping<T>>,
{
fn set_one(&mut self) {
self.0.set_one();
}
fn one() -> Self {
Wrapping(T::one())
}
}
// Some helper functions provided for backwards compatibility.
/// Returns the additive identity, `0`.
#[inline(always)]
pub fn zero<T: Zero>() -> T {
Zero::zero()
}
/// Returns the multiplicative identity, `1`.
#[inline(always)]
pub fn one<T: One>() -> T {
One::one()
}
#[test]
fn wrapping_identities() {
macro_rules! test_wrapping_identities {
($($t:ty)+) => {
$(
assert_eq!(zero::<$t>(), zero::<Wrapping<$t>>().0);
assert_eq!(one::<$t>(), one::<Wrapping<$t>>().0);
assert_eq!((0 as $t).is_zero(), Wrapping(0 as $t).is_zero());
assert_eq!((1 as $t).is_zero(), Wrapping(1 as $t).is_zero());
)+
};
}
test_wrapping_identities!(isize i8 i16 i32 i64 usize u8 u16 u32 u64);
}
#[test]
fn wrapping_is_zero() {
fn require_zero<T: Zero>(_: &T) {}
require_zero(&Wrapping(42));
}
#[test]
fn wrapping_is_one() {
fn require_one<T: One>(_: &T) {}
require_one(&Wrapping(42));
}

View File

@ -1,26 +1,55 @@
use std::ops::{Not, BitAnd, BitOr, BitXor, Shl, Shr};
use core::ops::{BitAnd, BitOr, BitXor, Not, Shl, Shr};
use {Num, NumCast};
use bounds::Bounded;
use ops::checked::*;
use ops::saturating::Saturating;
use {Num, NumCast};
pub trait PrimInt
: Sized
/// Generic trait for primitive integers.
///
/// The `PrimInt` trait is an abstraction over the builtin primitive integer types (e.g., `u8`,
/// `u32`, `isize`, `i128`, ...). It inherits the basic numeric traits and extends them with
/// bitwise operators and non-wrapping arithmetic.
///
/// The trait explicitly inherits `Copy`, `Eq`, `Ord`, and `Sized`. The intention is that all
/// types implementing this trait behave like primitive types that are passed by value by default
/// and behave like builtin integers. Furthermore, the types are expected to expose the integer
/// value in binary representation and support bitwise operators. The standard bitwise operations
/// (e.g., bitwise-and, bitwise-or, right-shift, left-shift) are inherited and the trait extends
/// these with introspective queries (e.g., `PrimInt::count_ones()`, `PrimInt::leading_zeros()`),
/// bitwise combinators (e.g., `PrimInt::rotate_left()`), and endianness converters (e.g.,
/// `PrimInt::to_be()`).
///
/// All `PrimInt` types are expected to be fixed-width binary integers. The width can be queried
/// via `T::zero().count_zeros()`. The trait currently lacks a way to query the width at
/// compile-time.
///
/// While a default implementation for all builtin primitive integers is provided, the trait is in
/// no way restricted to these. Other integer types that fulfil the requirements are free to
/// implement the trait was well.
///
/// This trait and many of the method names originate in the unstable `core::num::Int` trait from
/// the rust standard library. The original trait was never stabilized and thus removed from the
/// standard library.
pub trait PrimInt:
Sized
+ Copy
+ Num + NumCast
+ Num
+ NumCast
+ Bounded
+ PartialOrd + Ord + Eq
+ Not<Output=Self>
+ BitAnd<Output=Self>
+ BitOr<Output=Self>
+ BitXor<Output=Self>
+ Shl<usize, Output=Self>
+ Shr<usize, Output=Self>
+ CheckedAdd<Output=Self>
+ CheckedSub<Output=Self>
+ CheckedMul<Output=Self>
+ CheckedDiv<Output=Self>
+ PartialOrd
+ Ord
+ Eq
+ Not<Output = Self>
+ BitAnd<Output = Self>
+ BitOr<Output = Self>
+ BitXor<Output = Self>
+ Shl<usize, Output = Self>
+ Shr<usize, Output = Self>
+ CheckedAdd<Output = Self>
+ CheckedSub<Output = Self>
+ CheckedMul<Output = Self>
+ CheckedDiv<Output = Self>
+ Saturating
{
/// Returns the number of ones in the binary representation of `self`.
@ -168,10 +197,10 @@ pub trait PrimInt
/// ```
/// use num_traits::PrimInt;
///
/// let n = 0xFEDCBA9876543210i64;
/// let m = 0x000FEDCBA9876543i64;
/// let n = -8i8; // 0b11111000
/// let m = 62i8; // 0b00111110
///
/// assert_eq!(n.unsigned_shr(12), m);
/// assert_eq!(n.unsigned_shr(2), m);
/// ```
fn unsigned_shr(self, n: u32) -> Self;
@ -274,11 +303,11 @@ pub trait PrimInt
///
/// assert_eq!(2i32.pow(4), 16);
/// ```
fn pow(self, mut exp: u32) -> Self;
fn pow(self, exp: u32) -> Self;
}
macro_rules! prim_int_impl {
($T:ty, $S:ty, $U:ty) => (
($T:ty, $S:ty, $U:ty) => {
impl PrimInt for $T {
#[inline]
fn count_ones(self) -> u32 {
@ -360,17 +389,21 @@ macro_rules! prim_int_impl {
<$T>::pow(self, exp)
}
}
)
};
}
// prim_int_impl!(type, signed, unsigned);
prim_int_impl!(u8, i8, u8);
prim_int_impl!(u16, i16, u16);
prim_int_impl!(u32, i32, u32);
prim_int_impl!(u64, i64, u64);
prim_int_impl!(u8, i8, u8);
prim_int_impl!(u16, i16, u16);
prim_int_impl!(u32, i32, u32);
prim_int_impl!(u64, i64, u64);
#[cfg(has_i128)]
prim_int_impl!(u128, i128, u128);
prim_int_impl!(usize, isize, usize);
prim_int_impl!(i8, i8, u8);
prim_int_impl!(i16, i16, u16);
prim_int_impl!(i32, i32, u32);
prim_int_impl!(i64, i64, u64);
prim_int_impl!(i8, i8, u8);
prim_int_impl!(i16, i16, u16);
prim_int_impl!(i32, i32, u32);
prim_int_impl!(i64, i64, u64);
#[cfg(has_i128)]
prim_int_impl!(i128, i128, u128);
prim_int_impl!(isize, isize, usize);

View File

@ -1,4 +1,4 @@
// Copyright 2014-2016 The Rust Project Developers. See the COPYRIGHT
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
@ -8,104 +8,565 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A collection of numeric types and traits for Rust.
//! Numeric traits for generic mathematics
//!
//! This includes new types for big integers, rationals, and complex numbers,
//! new traits for generic programming on numeric properties like `Integer`,
//! and generic range iterators.
//! ## Compatibility
//!
//! ## Example
//!
//! This example uses the BigRational type and [Newton's method][newt] to
//! approximate a square root to arbitrary precision:
//!
//! ```
//! extern crate num;
//! # #[cfg(all(feature = "bigint", feature="rational"))]
//! # mod test {
//!
//! use num::FromPrimitive;
//! use num::bigint::BigInt;
//! use num::rational::{Ratio, BigRational};
//!
//! # pub
//! fn approx_sqrt(number: u64, iterations: usize) -> BigRational {
//! let start: Ratio<BigInt> = Ratio::from_integer(FromPrimitive::from_u64(number).unwrap());
//! let mut approx = start.clone();
//!
//! for _ in 0..iterations {
//! approx = (&approx + (&start / &approx)) /
//! Ratio::from_integer(FromPrimitive::from_u64(2).unwrap());
//! }
//!
//! approx
//! }
//! # }
//! # #[cfg(not(all(feature = "bigint", feature="rational")))]
//! # mod test { pub fn approx_sqrt(n: u64, _: usize) -> u64 { n } }
//! # use test::approx_sqrt;
//!
//! fn main() {
//! println!("{}", approx_sqrt(10, 4)); // prints 4057691201/1283082416
//! }
//!
//! ```
//!
//! [newt]: https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method
#![doc(html_logo_url = "http://rust-num.github.io/num/rust-logo-128x128-blk-v2.png",
html_favicon_url = "http://rust-num.github.io/num/favicon.ico",
html_root_url = "http://rust-num.github.io/num/",
html_playground_url = "http://play.rust-lang.org/")]
//! The `num-traits` crate is tested for rustc 1.8 and greater.
extern crate num_traits;
extern crate num_integer;
extern crate num_iter;
#[cfg(feature = "num-complex")]
extern crate num_complex;
#[cfg(feature = "num-bigint")]
extern crate num_bigint;
#[cfg(feature = "num-rational")]
extern crate num_rational;
#![doc(html_root_url = "https://docs.rs/num-traits/0.2")]
#![deny(unconditional_recursion)]
#![no_std]
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "num-bigint")]
pub use num_bigint::{BigInt, BigUint};
#[cfg(feature = "num-rational")]
pub use num_rational::Rational;
#[cfg(all(feature = "num-rational", feature="num-bigint"))]
pub use num_rational::BigRational;
#[cfg(feature = "num-complex")]
pub use num_complex::Complex;
pub use num_integer::Integer;
pub use num_iter::{range, range_inclusive, range_step, range_step_inclusive};
pub use num_traits::{Num, Zero, One, Signed, Unsigned, Bounded,
one, zero, abs, abs_sub, signum,
Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv,
PrimInt, Float, ToPrimitive, FromPrimitive, NumCast, cast,
pow, checked_pow};
// Only `no_std` builds actually use `libm`.
#[cfg(all(not(feature = "std"), feature = "libm"))]
extern crate libm;
#[cfg(feature = "num-bigint")]
pub mod bigint {
pub use num_bigint::*;
use core::fmt;
use core::num::Wrapping;
use core::ops::{Add, Div, Mul, Rem, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
pub use bounds::Bounded;
#[cfg(any(feature = "std", feature = "libm"))]
pub use float::Float;
pub use float::FloatConst;
// pub use real::{FloatCore, Real}; // NOTE: Don't do this, it breaks `use num_traits::*;`.
pub use cast::{cast, AsPrimitive, FromPrimitive, NumCast, ToPrimitive};
pub use identities::{one, zero, One, Zero};
pub use int::PrimInt;
pub use ops::checked::{
CheckedAdd, CheckedDiv, CheckedMul, CheckedNeg, CheckedRem, CheckedShl, CheckedShr, CheckedSub,
};
pub use ops::inv::Inv;
pub use ops::mul_add::{MulAdd, MulAddAssign};
pub use ops::saturating::Saturating;
pub use ops::wrapping::{WrappingAdd, WrappingMul, WrappingShl, WrappingShr, WrappingSub};
pub use pow::{checked_pow, pow, Pow};
pub use sign::{abs, abs_sub, signum, Signed, Unsigned};
#[macro_use]
mod macros;
pub mod bounds;
pub mod cast;
pub mod float;
pub mod identities;
pub mod int;
pub mod ops;
pub mod pow;
pub mod real;
pub mod sign;
/// The base trait for numeric types, covering `0` and `1` values,
/// comparisons, basic numeric operations, and string conversion.
pub trait Num: PartialEq + Zero + One + NumOps {
type FromStrRadixErr;
/// Convert from a string and radix <= 36.
///
/// # Examples
///
/// ```rust
/// use num_traits::Num;
///
/// let result = <i32 as Num>::from_str_radix("27", 10);
/// assert_eq!(result, Ok(27));
///
/// let result = <i32 as Num>::from_str_radix("foo", 10);
/// assert!(result.is_err());
/// ```
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
}
#[cfg(feature = "num-complex")]
pub mod complex {
pub use num_complex::*;
/// The trait for types implementing basic numeric operations
///
/// This is automatically implemented for types which implement the operators.
pub trait NumOps<Rhs = Self, Output = Self>:
Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{
}
pub mod integer {
pub use num_integer::*;
impl<T, Rhs, Output> NumOps<Rhs, Output> for T where
T: Add<Rhs, Output = Output>
+ Sub<Rhs, Output = Output>
+ Mul<Rhs, Output = Output>
+ Div<Rhs, Output = Output>
+ Rem<Rhs, Output = Output>
{
}
pub mod iter {
pub use num_iter::*;
/// The trait for `Num` types which also implement numeric operations taking
/// the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumRef: Num + for<'r> NumOps<&'r Self> {}
impl<T> NumRef for T where T: Num + for<'r> NumOps<&'r T> {}
/// The trait for references which implement numeric operations, taking the
/// second operand either by value or by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait RefNum<Base>: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
impl<T, Base> RefNum<Base> for T where T: NumOps<Base, Base> + for<'r> NumOps<&'r Base, Base> {}
/// The trait for types implementing numeric assignment operators (like `+=`).
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignOps<Rhs = Self>:
AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
pub mod traits {
pub use num_traits::*;
impl<T, Rhs> NumAssignOps<Rhs> for T where
T: AddAssign<Rhs> + SubAssign<Rhs> + MulAssign<Rhs> + DivAssign<Rhs> + RemAssign<Rhs>
{
}
#[cfg(feature = "num-rational")]
pub mod rational {
pub use num_rational::*;
/// The trait for `Num` types which also implement assignment operators.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssign: Num + NumAssignOps {}
impl<T> NumAssign for T where T: Num + NumAssignOps {}
/// The trait for `NumAssign` types which also implement assignment operations
/// taking the second operand by reference.
///
/// This is automatically implemented for types which implement the operators.
pub trait NumAssignRef: NumAssign + for<'r> NumAssignOps<&'r Self> {}
impl<T> NumAssignRef for T where T: NumAssign + for<'r> NumAssignOps<&'r T> {}
macro_rules! int_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ::core::num::ParseIntError;
#[inline]
fn from_str_radix(s: &str, radix: u32)
-> Result<Self, ::core::num::ParseIntError>
{
<$t>::from_str_radix(s, radix)
}
}
)*)
}
int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
#[cfg(has_i128)]
int_trait_impl!(Num for u128 i128);
impl<T: Num> Num for Wrapping<T>
where
Wrapping<T>: Add<Output = Wrapping<T>>
+ Sub<Output = Wrapping<T>>
+ Mul<Output = Wrapping<T>>
+ Div<Output = Wrapping<T>>
+ Rem<Output = Wrapping<T>>,
{
type FromStrRadixErr = T::FromStrRadixErr;
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
T::from_str_radix(str, radix).map(Wrapping)
}
}
#[derive(Debug)]
pub enum FloatErrorKind {
Empty,
Invalid,
}
// FIXME: core::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
pub kind: FloatErrorKind,
}
impl fmt::Display for ParseFloatError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let description = match self.kind {
FloatErrorKind::Empty => "cannot parse float from empty string",
FloatErrorKind::Invalid => "invalid float literal",
};
description.fmt(f)
}
}
// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
// with this implementation ourselves until we want to make a breaking change.
// (would have to drop it from `Num` though)
macro_rules! float_trait_impl {
($name:ident for $($t:ident)*) => ($(
impl $name for $t {
type FromStrRadixErr = ParseFloatError;
fn from_str_radix(src: &str, radix: u32)
-> Result<Self, Self::FromStrRadixErr>
{
use self::FloatErrorKind::*;
use self::ParseFloatError as PFE;
// Special values
match src {
"inf" => return Ok(core::$t::INFINITY),
"-inf" => return Ok(core::$t::NEG_INFINITY),
"NaN" => return Ok(core::$t::NAN),
_ => {},
}
fn slice_shift_char(src: &str) -> Option<(char, &str)> {
let mut chars = src.chars();
if let Some(ch) = chars.next() {
Some((ch, chars.as_str()))
} else {
None
}
}
let (is_positive, src) = match slice_shift_char(src) {
None => return Err(PFE { kind: Empty }),
Some(('-', "")) => return Err(PFE { kind: Empty }),
Some(('-', src)) => (false, src),
Some((_, _)) => (true, src),
};
// The significand to accumulate
let mut sig = if is_positive { 0.0 } else { -0.0 };
// Necessary to detect overflow
let mut prev_sig = sig;
let mut cs = src.chars().enumerate();
// Exponent prefix and exponent index offset
let mut exp_info = None::<(char, usize)>;
// Parse the integer part of the significand
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// shift significand one digit left
sig = sig * (radix as $t);
// add/subtract current digit depending on sign
if is_positive {
sig = sig + ((digit as isize) as $t);
} else {
sig = sig - ((digit as isize) as $t);
}
// Detect overflow by comparing to last value, except
// if we've not seen any non-zero digits.
if prev_sig != 0.0 {
if is_positive && sig <= prev_sig
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig >= prev_sig
{ return Ok(core::$t::NEG_INFINITY); }
// Detect overflow by reversing the shift-and-add process
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
{ return Ok(core::$t::INFINITY); }
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
{ return Ok(core::$t::NEG_INFINITY); }
}
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
'.' => {
break; // start of fractional part
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
// If we are not yet at the exponent parse the fractional
// part of the significand
if exp_info.is_none() {
let mut power = 1.0;
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// Decrease power one order of magnitude
power = power / (radix as $t);
// add/subtract current digit depending on sign
sig = if is_positive {
sig + (digit as $t) * power
} else {
sig - (digit as $t) * power
};
// Detect overflow by comparing to last value
if is_positive && sig < prev_sig
{ return Ok(core::$t::INFINITY); }
if !is_positive && sig > prev_sig
{ return Ok(core::$t::NEG_INFINITY); }
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
}
// Parse and calculate the exponent
let exp = match exp_info {
Some((c, offset)) => {
let base = match c {
'E' | 'e' if radix == 10 => 10.0,
'P' | 'p' if radix == 16 => 2.0,
_ => return Err(PFE { kind: Invalid }),
};
// Parse the exponent as decimal integer
let src = &src[offset..];
let (is_positive, exp) = match slice_shift_char(src) {
Some(('-', src)) => (false, src.parse::<usize>()),
Some(('+', src)) => (true, src.parse::<usize>()),
Some((_, _)) => (true, src.parse::<usize>()),
None => return Err(PFE { kind: Invalid }),
};
#[cfg(feature = "std")]
fn pow(base: $t, exp: usize) -> $t {
Float::powi(base, exp as i32)
}
// otherwise uses the generic `pow` from the root
match (is_positive, exp) {
(true, Ok(exp)) => pow(base, exp),
(false, Ok(exp)) => 1.0 / pow(base, exp),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
}
},
None => 1.0, // no exponent
};
Ok(sig * exp)
}
}
)*)
}
float_trait_impl!(Num for f32 f64);
/// A value bounded by a minimum and a maximum
///
/// If input is less than min then this returns min.
/// If input is greater than max then this returns max.
/// Otherwise this returns input.
///
/// **Panics** in debug mode if `!(min <= max)`.
#[inline]
pub fn clamp<T: PartialOrd>(input: T, min: T, max: T) -> T {
debug_assert!(min <= max, "min must be less than or equal to max");
if input < min {
min
} else if input > max {
max
} else {
input
}
}
/// A value bounded by a minimum value
///
/// If input is less than min then this returns min.
/// Otherwise this returns input.
/// `clamp_min(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::min(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(min == min)`. (This occurs if `min` is `NAN`.)
#[inline]
pub fn clamp_min<T: PartialOrd>(input: T, min: T) -> T {
debug_assert!(min == min, "min must not be NAN");
if input < min {
min
} else {
input
}
}
/// A value bounded by a maximum value
///
/// If input is greater than max then this returns max.
/// Otherwise this returns input.
/// `clamp_max(std::f32::NAN, 1.0)` preserves `NAN` different from `f32::max(std::f32::NAN, 1.0)`.
///
/// **Panics** in debug mode if `!(max == max)`. (This occurs if `max` is `NAN`.)
#[inline]
pub fn clamp_max<T: PartialOrd>(input: T, max: T) -> T {
debug_assert!(max == max, "max must not be NAN");
if input > max {
max
} else {
input
}
}
#[test]
fn clamp_test() {
// Int test
assert_eq!(1, clamp(1, -1, 2));
assert_eq!(-1, clamp(-2, -1, 2));
assert_eq!(2, clamp(3, -1, 2));
assert_eq!(1, clamp_min(1, -1));
assert_eq!(-1, clamp_min(-2, -1));
assert_eq!(-1, clamp_max(1, -1));
assert_eq!(-2, clamp_max(-2, -1));
// Float test
assert_eq!(1.0, clamp(1.0, -1.0, 2.0));
assert_eq!(-1.0, clamp(-2.0, -1.0, 2.0));
assert_eq!(2.0, clamp(3.0, -1.0, 2.0));
assert_eq!(1.0, clamp_min(1.0, -1.0));
assert_eq!(-1.0, clamp_min(-2.0, -1.0));
assert_eq!(-1.0, clamp_max(1.0, -1.0));
assert_eq!(-2.0, clamp_max(-2.0, -1.0));
assert!(clamp(::core::f32::NAN, -1.0, 1.0).is_nan());
assert!(clamp_min(::core::f32::NAN, 1.0).is_nan());
assert!(clamp_max(::core::f32::NAN, 1.0).is_nan());
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min() {
clamp(0., ::core::f32::NAN, 1.);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_max() {
clamp(0., -1., ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_nan_min_max() {
clamp(0., ::core::f32::NAN, ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_min_nan_min() {
clamp_min(0., ::core::f32::NAN);
}
#[test]
#[should_panic]
#[cfg(debug_assertions)]
fn clamp_max_nan_max() {
clamp_max(0., ::core::f32::NAN);
}
#[test]
fn from_str_radix_unwrap() {
// The Result error must impl Debug to allow unwrap()
let i: i32 = Num::from_str_radix("0", 10).unwrap();
assert_eq!(i, 0);
let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
assert_eq!(f, 0.0);
}
#[test]
fn from_str_radix_multi_byte_fail() {
// Ensure parsing doesn't panic, even on invalid sign characters
assert!(f32::from_str_radix("™0.2", 10).is_err());
// Even when parsing the exponent sign
assert!(f32::from_str_radix("0.2E™1", 10).is_err());
}
#[test]
fn wrapping_is_num() {
fn require_num<T: Num>(_: &T) {}
require_num(&Wrapping(42_u32));
require_num(&Wrapping(-42));
}
#[test]
fn wrapping_from_str_radix() {
macro_rules! test_wrapping_from_str_radix {
($($t:ty)+) => {
$(
for &(s, r) in &[("42", 10), ("42", 2), ("-13.0", 10), ("foo", 10)] {
let w = Wrapping::<$t>::from_str_radix(s, r).map(|w| w.0);
assert_eq!(w, <$t as Num>::from_str_radix(s, r));
}
)+
};
}
test_wrapping_from_str_radix!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn check_num_ops() {
fn compute<T: Num + Copy>(x: T, y: T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, 2), 1)
}
#[test]
fn check_numref_ops() {
fn compute<T: NumRef>(x: T, y: &T) -> T {
x * y / y % y + y - y
}
assert_eq!(compute(1, &2), 1)
}
#[test]
fn check_refnum_ops() {
fn compute<T: Copy>(x: &T, y: T) -> T
where
for<'a> &'a T: RefNum<T>,
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, 2), 1)
}
#[test]
fn check_refref_ops() {
fn compute<T>(x: &T, y: &T) -> T
where
for<'a> &'a T: RefNum<T>,
{
&(&(&(&(x * y) / y) % y) + y) - y
}
assert_eq!(compute(&1, &2), 1)
}
#[test]
fn check_numassign_ops() {
fn compute<T: NumAssign + Copy>(mut x: T, y: T) -> T {
x *= y;
x /= y;
x %= y;
x += y;
x -= y;
x
}
assert_eq!(compute(1, 2), 1)
}
// TODO test `NumAssignRef`, but even the standard numeric types don't
// implement this yet. (see rust pr41336)

37
src/macros.rs Normal file
View File

@ -0,0 +1,37 @@
// not all are used in all features configurations
#![allow(unused)]
/// Forward a method to an inherent method or a base trait method.
macro_rules! forward {
($( Self :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
=> {$(
#[inline]
fn $method(self $( , $arg : $ty )* ) -> $ret {
Self::$method(self $( , $arg )* )
}
)*};
($( $base:ident :: $method:ident ( self $( , $arg:ident : $ty:ty )* ) -> $ret:ty ; )*)
=> {$(
#[inline]
fn $method(self $( , $arg : $ty )* ) -> $ret {
<Self as $base>::$method(self $( , $arg )* )
}
)*};
($( $base:ident :: $method:ident ( $( $arg:ident : $ty:ty ),* ) -> $ret:ty ; )*)
=> {$(
#[inline]
fn $method( $( $arg : $ty ),* ) -> $ret {
<Self as $base>::$method( $( $arg ),* )
}
)*}
}
macro_rules! constant {
($( $method:ident () -> $ret:expr ; )*)
=> {$(
#[inline]
fn $method() -> Self {
$ret
}
)*};
}

277
src/ops/checked.rs Normal file
View File

@ -0,0 +1,277 @@
use core::ops::{Add, Div, Mul, Rem, Shl, Shr, Sub};
/// Performs addition that returns `None` instead of wrapping around on
/// overflow.
pub trait CheckedAdd: Sized + Add<Self, Output = Self> {
/// Adds two numbers, checking for overflow. If overflow happens, `None` is
/// returned.
fn checked_add(&self, v: &Self) -> Option<Self>;
}
macro_rules! checked_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &$t) -> Option<$t> {
<$t>::$method(*self, *v)
}
}
};
}
checked_impl!(CheckedAdd, checked_add, u8);
checked_impl!(CheckedAdd, checked_add, u16);
checked_impl!(CheckedAdd, checked_add, u32);
checked_impl!(CheckedAdd, checked_add, u64);
checked_impl!(CheckedAdd, checked_add, usize);
#[cfg(has_i128)]
checked_impl!(CheckedAdd, checked_add, u128);
checked_impl!(CheckedAdd, checked_add, i8);
checked_impl!(CheckedAdd, checked_add, i16);
checked_impl!(CheckedAdd, checked_add, i32);
checked_impl!(CheckedAdd, checked_add, i64);
checked_impl!(CheckedAdd, checked_add, isize);
#[cfg(has_i128)]
checked_impl!(CheckedAdd, checked_add, i128);
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
pub trait CheckedSub: Sized + Sub<Self, Output = Self> {
/// Subtracts two numbers, checking for underflow. If underflow happens,
/// `None` is returned.
fn checked_sub(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedSub, checked_sub, u8);
checked_impl!(CheckedSub, checked_sub, u16);
checked_impl!(CheckedSub, checked_sub, u32);
checked_impl!(CheckedSub, checked_sub, u64);
checked_impl!(CheckedSub, checked_sub, usize);
#[cfg(has_i128)]
checked_impl!(CheckedSub, checked_sub, u128);
checked_impl!(CheckedSub, checked_sub, i8);
checked_impl!(CheckedSub, checked_sub, i16);
checked_impl!(CheckedSub, checked_sub, i32);
checked_impl!(CheckedSub, checked_sub, i64);
checked_impl!(CheckedSub, checked_sub, isize);
#[cfg(has_i128)]
checked_impl!(CheckedSub, checked_sub, i128);
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
/// overflow.
pub trait CheckedMul: Sized + Mul<Self, Output = Self> {
/// Multiplies two numbers, checking for underflow or overflow. If underflow
/// or overflow happens, `None` is returned.
fn checked_mul(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedMul, checked_mul, u8);
checked_impl!(CheckedMul, checked_mul, u16);
checked_impl!(CheckedMul, checked_mul, u32);
checked_impl!(CheckedMul, checked_mul, u64);
checked_impl!(CheckedMul, checked_mul, usize);
#[cfg(has_i128)]
checked_impl!(CheckedMul, checked_mul, u128);
checked_impl!(CheckedMul, checked_mul, i8);
checked_impl!(CheckedMul, checked_mul, i16);
checked_impl!(CheckedMul, checked_mul, i32);
checked_impl!(CheckedMul, checked_mul, i64);
checked_impl!(CheckedMul, checked_mul, isize);
#[cfg(has_i128)]
checked_impl!(CheckedMul, checked_mul, i128);
/// Performs division that returns `None` instead of panicking on division by zero and instead of
/// wrapping around on underflow and overflow.
pub trait CheckedDiv: Sized + Div<Self, Output = Self> {
/// Divides two numbers, checking for underflow, overflow and division by
/// zero. If any of that happens, `None` is returned.
fn checked_div(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedDiv, checked_div, u8);
checked_impl!(CheckedDiv, checked_div, u16);
checked_impl!(CheckedDiv, checked_div, u32);
checked_impl!(CheckedDiv, checked_div, u64);
checked_impl!(CheckedDiv, checked_div, usize);
#[cfg(has_i128)]
checked_impl!(CheckedDiv, checked_div, u128);
checked_impl!(CheckedDiv, checked_div, i8);
checked_impl!(CheckedDiv, checked_div, i16);
checked_impl!(CheckedDiv, checked_div, i32);
checked_impl!(CheckedDiv, checked_div, i64);
checked_impl!(CheckedDiv, checked_div, isize);
#[cfg(has_i128)]
checked_impl!(CheckedDiv, checked_div, i128);
/// Performs an integral remainder that returns `None` instead of panicking on division by zero and
/// instead of wrapping around on underflow and overflow.
pub trait CheckedRem: Sized + Rem<Self, Output = Self> {
/// Finds the remainder of dividing two numbers, checking for underflow, overflow and division
/// by zero. If any of that happens, `None` is returned.
///
/// # Examples
///
/// ```
/// use num_traits::CheckedRem;
/// use std::i32::MIN;
///
/// assert_eq!(CheckedRem::checked_rem(&10, &7), Some(3));
/// assert_eq!(CheckedRem::checked_rem(&10, &-7), Some(3));
/// assert_eq!(CheckedRem::checked_rem(&-10, &7), Some(-3));
/// assert_eq!(CheckedRem::checked_rem(&-10, &-7), Some(-3));
///
/// assert_eq!(CheckedRem::checked_rem(&10, &0), None);
///
/// assert_eq!(CheckedRem::checked_rem(&MIN, &1), Some(0));
/// assert_eq!(CheckedRem::checked_rem(&MIN, &-1), None);
/// ```
fn checked_rem(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedRem, checked_rem, u8);
checked_impl!(CheckedRem, checked_rem, u16);
checked_impl!(CheckedRem, checked_rem, u32);
checked_impl!(CheckedRem, checked_rem, u64);
checked_impl!(CheckedRem, checked_rem, usize);
#[cfg(has_i128)]
checked_impl!(CheckedRem, checked_rem, u128);
checked_impl!(CheckedRem, checked_rem, i8);
checked_impl!(CheckedRem, checked_rem, i16);
checked_impl!(CheckedRem, checked_rem, i32);
checked_impl!(CheckedRem, checked_rem, i64);
checked_impl!(CheckedRem, checked_rem, isize);
#[cfg(has_i128)]
checked_impl!(CheckedRem, checked_rem, i128);
macro_rules! checked_impl_unary {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self) -> Option<$t> {
<$t>::$method(*self)
}
}
};
}
/// Performs negation that returns `None` if the result can't be represented.
pub trait CheckedNeg: Sized {
/// Negates a number, returning `None` for results that can't be represented, like signed `MIN`
/// values that can't be positive, or non-zero unsigned values that can't be negative.
///
/// # Examples
///
/// ```
/// use num_traits::CheckedNeg;
/// use std::i32::MIN;
///
/// assert_eq!(CheckedNeg::checked_neg(&1_i32), Some(-1));
/// assert_eq!(CheckedNeg::checked_neg(&-1_i32), Some(1));
/// assert_eq!(CheckedNeg::checked_neg(&MIN), None);
///
/// assert_eq!(CheckedNeg::checked_neg(&0_u32), Some(0));
/// assert_eq!(CheckedNeg::checked_neg(&1_u32), None);
/// ```
fn checked_neg(&self) -> Option<Self>;
}
checked_impl_unary!(CheckedNeg, checked_neg, u8);
checked_impl_unary!(CheckedNeg, checked_neg, u16);
checked_impl_unary!(CheckedNeg, checked_neg, u32);
checked_impl_unary!(CheckedNeg, checked_neg, u64);
checked_impl_unary!(CheckedNeg, checked_neg, usize);
#[cfg(has_i128)]
checked_impl_unary!(CheckedNeg, checked_neg, u128);
checked_impl_unary!(CheckedNeg, checked_neg, i8);
checked_impl_unary!(CheckedNeg, checked_neg, i16);
checked_impl_unary!(CheckedNeg, checked_neg, i32);
checked_impl_unary!(CheckedNeg, checked_neg, i64);
checked_impl_unary!(CheckedNeg, checked_neg, isize);
#[cfg(has_i128)]
checked_impl_unary!(CheckedNeg, checked_neg, i128);
/// Performs a left shift that returns `None` on shifts larger than
/// the type width.
pub trait CheckedShl: Sized + Shl<u32, Output = Self> {
/// Checked shift left. Computes `self << rhs`, returning `None`
/// if `rhs` is larger than or equal to the number of bits in `self`.
///
/// ```
/// use num_traits::CheckedShl;
///
/// let x: u16 = 0x0001;
///
/// assert_eq!(CheckedShl::checked_shl(&x, 0), Some(0x0001));
/// assert_eq!(CheckedShl::checked_shl(&x, 1), Some(0x0002));
/// assert_eq!(CheckedShl::checked_shl(&x, 15), Some(0x8000));
/// assert_eq!(CheckedShl::checked_shl(&x, 16), None);
/// ```
fn checked_shl(&self, rhs: u32) -> Option<Self>;
}
macro_rules! checked_shift_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, rhs: u32) -> Option<$t> {
<$t>::$method(*self, rhs)
}
}
};
}
checked_shift_impl!(CheckedShl, checked_shl, u8);
checked_shift_impl!(CheckedShl, checked_shl, u16);
checked_shift_impl!(CheckedShl, checked_shl, u32);
checked_shift_impl!(CheckedShl, checked_shl, u64);
checked_shift_impl!(CheckedShl, checked_shl, usize);
#[cfg(has_i128)]
checked_shift_impl!(CheckedShl, checked_shl, u128);
checked_shift_impl!(CheckedShl, checked_shl, i8);
checked_shift_impl!(CheckedShl, checked_shl, i16);
checked_shift_impl!(CheckedShl, checked_shl, i32);
checked_shift_impl!(CheckedShl, checked_shl, i64);
checked_shift_impl!(CheckedShl, checked_shl, isize);
#[cfg(has_i128)]
checked_shift_impl!(CheckedShl, checked_shl, i128);
/// Performs a right shift that returns `None` on shifts larger than
/// the type width.
pub trait CheckedShr: Sized + Shr<u32, Output = Self> {
/// Checked shift right. Computes `self >> rhs`, returning `None`
/// if `rhs` is larger than or equal to the number of bits in `self`.
///
/// ```
/// use num_traits::CheckedShr;
///
/// let x: u16 = 0x8000;
///
/// assert_eq!(CheckedShr::checked_shr(&x, 0), Some(0x8000));
/// assert_eq!(CheckedShr::checked_shr(&x, 1), Some(0x4000));
/// assert_eq!(CheckedShr::checked_shr(&x, 15), Some(0x0001));
/// assert_eq!(CheckedShr::checked_shr(&x, 16), None);
/// ```
fn checked_shr(&self, rhs: u32) -> Option<Self>;
}
checked_shift_impl!(CheckedShr, checked_shr, u8);
checked_shift_impl!(CheckedShr, checked_shr, u16);
checked_shift_impl!(CheckedShr, checked_shr, u32);
checked_shift_impl!(CheckedShr, checked_shr, u64);
checked_shift_impl!(CheckedShr, checked_shr, usize);
#[cfg(has_i128)]
checked_shift_impl!(CheckedShr, checked_shr, u128);
checked_shift_impl!(CheckedShr, checked_shr, i8);
checked_shift_impl!(CheckedShr, checked_shr, i16);
checked_shift_impl!(CheckedShr, checked_shr, i32);
checked_shift_impl!(CheckedShr, checked_shr, i64);
checked_shift_impl!(CheckedShr, checked_shr, isize);
#[cfg(has_i128)]
checked_shift_impl!(CheckedShr, checked_shr, i128);

47
src/ops/inv.rs Normal file
View File

@ -0,0 +1,47 @@
/// Unary operator for retrieving the multiplicative inverse, or reciprocal, of a value.
pub trait Inv {
/// The result after applying the operator.
type Output;
/// Returns the multiplicative inverse of `self`.
///
/// # Examples
///
/// ```
/// use std::f64::INFINITY;
/// use num_traits::Inv;
///
/// assert_eq!(7.0.inv() * 7.0, 1.0);
/// assert_eq!((-0.0).inv(), -INFINITY);
/// ```
fn inv(self) -> Self::Output;
}
impl Inv for f32 {
type Output = f32;
#[inline]
fn inv(self) -> f32 {
1.0 / self
}
}
impl Inv for f64 {
type Output = f64;
#[inline]
fn inv(self) -> f64 {
1.0 / self
}
}
impl<'a> Inv for &'a f32 {
type Output = f32;
#[inline]
fn inv(self) -> f32 {
1.0 / *self
}
}
impl<'a> Inv for &'a f64 {
type Output = f64;
#[inline]
fn inv(self) -> f64 {
1.0 / *self
}
}

5
src/ops/mod.rs Normal file
View File

@ -0,0 +1,5 @@
pub mod checked;
pub mod inv;
pub mod mul_add;
pub mod saturating;
pub mod wrapping;

151
src/ops/mul_add.rs Normal file
View File

@ -0,0 +1,151 @@
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` can be more performant than an unfused multiply-add if
/// the target architecture has a dedicated `fma` CPU instruction.
///
/// Note that `A` and `B` are `Self` by default, but this is not mandatory.
///
/// # Example
///
/// ```
/// use std::f32;
///
/// let m = 10.0_f32;
/// let x = 4.0_f32;
/// let b = 60.0_f32;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
///
/// assert!(abs_difference <= 100.0 * f32::EPSILON);
/// ```
pub trait MulAdd<A = Self, B = Self> {
/// The resulting type after applying the fused multiply-add.
type Output;
/// Performs the fused multiply-add operation.
fn mul_add(self, a: A, b: B) -> Self::Output;
}
/// The fused multiply-add assignment operation.
pub trait MulAddAssign<A = Self, B = Self> {
/// Performs the fused multiply-add operation.
fn mul_add_assign(&mut self, a: A, b: B);
}
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAdd<f32, f32> for f32 {
type Output = Self;
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self::Output {
<Self as ::Float>::mul_add(self, a, b)
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAdd<f64, f64> for f64 {
type Output = Self;
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self::Output {
<Self as ::Float>::mul_add(self, a, b)
}
}
macro_rules! mul_add_impl {
($trait_name:ident for $($t:ty)*) => {$(
impl $trait_name for $t {
type Output = Self;
#[inline]
fn mul_add(self, a: Self, b: Self) -> Self::Output {
(self * a) + b
}
}
)*}
}
mul_add_impl!(MulAdd for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
#[cfg(has_i128)]
mul_add_impl!(MulAdd for i128 u128);
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAddAssign<f32, f32> for f32 {
#[inline]
fn mul_add_assign(&mut self, a: Self, b: Self) {
*self = <Self as ::Float>::mul_add(*self, a, b)
}
}
#[cfg(any(feature = "std", feature = "libm"))]
impl MulAddAssign<f64, f64> for f64 {
#[inline]
fn mul_add_assign(&mut self, a: Self, b: Self) {
*self = <Self as ::Float>::mul_add(*self, a, b)
}
}
macro_rules! mul_add_assign_impl {
($trait_name:ident for $($t:ty)*) => {$(
impl $trait_name for $t {
#[inline]
fn mul_add_assign(&mut self, a: Self, b: Self) {
*self = (*self * a) + b
}
}
)*}
}
mul_add_assign_impl!(MulAddAssign for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
#[cfg(has_i128)]
mul_add_assign_impl!(MulAddAssign for i128 u128);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn mul_add_integer() {
macro_rules! test_mul_add {
($($t:ident)+) => {
$(
{
let m: $t = 2;
let x: $t = 3;
let b: $t = 4;
assert_eq!(MulAdd::mul_add(m, x, b), (m*x + b));
}
)+
};
}
test_mul_add!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
#[cfg(feature = "std")]
fn mul_add_float() {
macro_rules! test_mul_add {
($($t:ident)+) => {
$(
{
use core::$t;
let m: $t = 12.0;
let x: $t = 3.4;
let b: $t = 5.6;
let abs_difference = (MulAdd::mul_add(m, x, b) - (m*x + b)).abs();
assert!(abs_difference <= 46.4 * $t::EPSILON);
}
)+
};
}
test_mul_add!(f32 f64);
}
}

View File

@ -26,3 +26,5 @@ macro_rules! saturating_impl {
}
saturating_impl!(Saturating for isize usize i8 u8 i16 u16 i32 u32 i64 u64);
#[cfg(has_i128)]
saturating_impl!(Saturating for i128 u128);

272
src/ops/wrapping.rs Normal file
View File

@ -0,0 +1,272 @@
use core::num::Wrapping;
use core::ops::{Add, Mul, Shl, Shr, Sub};
macro_rules! wrapping_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &Self) -> Self {
<$t>::$method(*self, *v)
}
}
};
($trait_name:ident, $method:ident, $t:ty, $rhs:ty) => {
impl $trait_name<$rhs> for $t {
#[inline]
fn $method(&self, v: &$rhs) -> Self {
<$t>::$method(*self, *v)
}
}
};
}
/// Performs addition that wraps around on overflow.
pub trait WrappingAdd: Sized + Add<Self, Output = Self> {
/// Wrapping (modular) addition. Computes `self + other`, wrapping around at the boundary of
/// the type.
fn wrapping_add(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingAdd, wrapping_add, u8);
wrapping_impl!(WrappingAdd, wrapping_add, u16);
wrapping_impl!(WrappingAdd, wrapping_add, u32);
wrapping_impl!(WrappingAdd, wrapping_add, u64);
wrapping_impl!(WrappingAdd, wrapping_add, usize);
#[cfg(has_i128)]
wrapping_impl!(WrappingAdd, wrapping_add, u128);
wrapping_impl!(WrappingAdd, wrapping_add, i8);
wrapping_impl!(WrappingAdd, wrapping_add, i16);
wrapping_impl!(WrappingAdd, wrapping_add, i32);
wrapping_impl!(WrappingAdd, wrapping_add, i64);
wrapping_impl!(WrappingAdd, wrapping_add, isize);
#[cfg(has_i128)]
wrapping_impl!(WrappingAdd, wrapping_add, i128);
/// Performs subtraction that wraps around on overflow.
pub trait WrappingSub: Sized + Sub<Self, Output = Self> {
/// Wrapping (modular) subtraction. Computes `self - other`, wrapping around at the boundary
/// of the type.
fn wrapping_sub(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingSub, wrapping_sub, u8);
wrapping_impl!(WrappingSub, wrapping_sub, u16);
wrapping_impl!(WrappingSub, wrapping_sub, u32);
wrapping_impl!(WrappingSub, wrapping_sub, u64);
wrapping_impl!(WrappingSub, wrapping_sub, usize);
#[cfg(has_i128)]
wrapping_impl!(WrappingSub, wrapping_sub, u128);
wrapping_impl!(WrappingSub, wrapping_sub, i8);
wrapping_impl!(WrappingSub, wrapping_sub, i16);
wrapping_impl!(WrappingSub, wrapping_sub, i32);
wrapping_impl!(WrappingSub, wrapping_sub, i64);
wrapping_impl!(WrappingSub, wrapping_sub, isize);
#[cfg(has_i128)]
wrapping_impl!(WrappingSub, wrapping_sub, i128);
/// Performs multiplication that wraps around on overflow.
pub trait WrappingMul: Sized + Mul<Self, Output = Self> {
/// Wrapping (modular) multiplication. Computes `self * other`, wrapping around at the boundary
/// of the type.
fn wrapping_mul(&self, v: &Self) -> Self;
}
wrapping_impl!(WrappingMul, wrapping_mul, u8);
wrapping_impl!(WrappingMul, wrapping_mul, u16);
wrapping_impl!(WrappingMul, wrapping_mul, u32);
wrapping_impl!(WrappingMul, wrapping_mul, u64);
wrapping_impl!(WrappingMul, wrapping_mul, usize);
#[cfg(has_i128)]
wrapping_impl!(WrappingMul, wrapping_mul, u128);
wrapping_impl!(WrappingMul, wrapping_mul, i8);
wrapping_impl!(WrappingMul, wrapping_mul, i16);
wrapping_impl!(WrappingMul, wrapping_mul, i32);
wrapping_impl!(WrappingMul, wrapping_mul, i64);
wrapping_impl!(WrappingMul, wrapping_mul, isize);
#[cfg(has_i128)]
wrapping_impl!(WrappingMul, wrapping_mul, i128);
macro_rules! wrapping_shift_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, rhs: u32) -> $t {
<$t>::$method(*self, rhs)
}
}
};
}
/// Performs a left shift that does not panic.
pub trait WrappingShl: Sized + Shl<usize, Output = Self> {
/// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
/// where `mask` removes any high order bits of `rhs` that would
/// cause the shift to exceed the bitwidth of the type.
///
/// ```
/// use num_traits::WrappingShl;
///
/// let x: u16 = 0x0001;
///
/// assert_eq!(WrappingShl::wrapping_shl(&x, 0), 0x0001);
/// assert_eq!(WrappingShl::wrapping_shl(&x, 1), 0x0002);
/// assert_eq!(WrappingShl::wrapping_shl(&x, 15), 0x8000);
/// assert_eq!(WrappingShl::wrapping_shl(&x, 16), 0x0001);
/// ```
fn wrapping_shl(&self, rhs: u32) -> Self;
}
wrapping_shift_impl!(WrappingShl, wrapping_shl, u8);
wrapping_shift_impl!(WrappingShl, wrapping_shl, u16);
wrapping_shift_impl!(WrappingShl, wrapping_shl, u32);
wrapping_shift_impl!(WrappingShl, wrapping_shl, u64);
wrapping_shift_impl!(WrappingShl, wrapping_shl, usize);
#[cfg(has_i128)]
wrapping_shift_impl!(WrappingShl, wrapping_shl, u128);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i8);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i16);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i32);
wrapping_shift_impl!(WrappingShl, wrapping_shl, i64);
wrapping_shift_impl!(WrappingShl, wrapping_shl, isize);
#[cfg(has_i128)]
wrapping_shift_impl!(WrappingShl, wrapping_shl, i128);
/// Performs a right shift that does not panic.
pub trait WrappingShr: Sized + Shr<usize, Output = Self> {
/// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
/// where `mask` removes any high order bits of `rhs` that would
/// cause the shift to exceed the bitwidth of the type.
///
/// ```
/// use num_traits::WrappingShr;
///
/// let x: u16 = 0x8000;
///
/// assert_eq!(WrappingShr::wrapping_shr(&x, 0), 0x8000);
/// assert_eq!(WrappingShr::wrapping_shr(&x, 1), 0x4000);
/// assert_eq!(WrappingShr::wrapping_shr(&x, 15), 0x0001);
/// assert_eq!(WrappingShr::wrapping_shr(&x, 16), 0x8000);
/// ```
fn wrapping_shr(&self, rhs: u32) -> Self;
}
wrapping_shift_impl!(WrappingShr, wrapping_shr, u8);
wrapping_shift_impl!(WrappingShr, wrapping_shr, u16);
wrapping_shift_impl!(WrappingShr, wrapping_shr, u32);
wrapping_shift_impl!(WrappingShr, wrapping_shr, u64);
wrapping_shift_impl!(WrappingShr, wrapping_shr, usize);
#[cfg(has_i128)]
wrapping_shift_impl!(WrappingShr, wrapping_shr, u128);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i8);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i16);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i32);
wrapping_shift_impl!(WrappingShr, wrapping_shr, i64);
wrapping_shift_impl!(WrappingShr, wrapping_shr, isize);
#[cfg(has_i128)]
wrapping_shift_impl!(WrappingShr, wrapping_shr, i128);
// Well this is a bit funny, but all the more appropriate.
impl<T: WrappingAdd> WrappingAdd for Wrapping<T>
where
Wrapping<T>: Add<Output = Wrapping<T>>,
{
fn wrapping_add(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_add(&v.0))
}
}
impl<T: WrappingSub> WrappingSub for Wrapping<T>
where
Wrapping<T>: Sub<Output = Wrapping<T>>,
{
fn wrapping_sub(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_sub(&v.0))
}
}
impl<T: WrappingMul> WrappingMul for Wrapping<T>
where
Wrapping<T>: Mul<Output = Wrapping<T>>,
{
fn wrapping_mul(&self, v: &Self) -> Self {
Wrapping(self.0.wrapping_mul(&v.0))
}
}
impl<T: WrappingShl> WrappingShl for Wrapping<T>
where
Wrapping<T>: Shl<usize, Output = Wrapping<T>>,
{
fn wrapping_shl(&self, rhs: u32) -> Self {
Wrapping(self.0.wrapping_shl(rhs))
}
}
impl<T: WrappingShr> WrappingShr for Wrapping<T>
where
Wrapping<T>: Shr<usize, Output = Wrapping<T>>,
{
fn wrapping_shr(&self, rhs: u32) -> Self {
Wrapping(self.0.wrapping_shr(rhs))
}
}
#[test]
fn test_wrapping_traits() {
fn wrapping_add<T: WrappingAdd>(a: T, b: T) -> T {
a.wrapping_add(&b)
}
fn wrapping_sub<T: WrappingSub>(a: T, b: T) -> T {
a.wrapping_sub(&b)
}
fn wrapping_mul<T: WrappingMul>(a: T, b: T) -> T {
a.wrapping_mul(&b)
}
fn wrapping_shl<T: WrappingShl>(a: T, b: u32) -> T {
a.wrapping_shl(b)
}
fn wrapping_shr<T: WrappingShr>(a: T, b: u32) -> T {
a.wrapping_shr(b)
}
assert_eq!(wrapping_add(255, 1), 0u8);
assert_eq!(wrapping_sub(0, 1), 255u8);
assert_eq!(wrapping_mul(255, 2), 254u8);
assert_eq!(wrapping_shl(255, 8), 255u8);
assert_eq!(wrapping_shr(255, 8), 255u8);
assert_eq!(wrapping_add(255, 1), (Wrapping(255u8) + Wrapping(1u8)).0);
assert_eq!(wrapping_sub(0, 1), (Wrapping(0u8) - Wrapping(1u8)).0);
assert_eq!(wrapping_mul(255, 2), (Wrapping(255u8) * Wrapping(2u8)).0);
assert_eq!(wrapping_shl(255, 8), (Wrapping(255u8) << 8).0);
assert_eq!(wrapping_shr(255, 8), (Wrapping(255u8) >> 8).0);
}
#[test]
fn wrapping_is_wrappingadd() {
fn require_wrappingadd<T: WrappingAdd>(_: &T) {}
require_wrappingadd(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingsub() {
fn require_wrappingsub<T: WrappingSub>(_: &T) {}
require_wrappingsub(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingmul() {
fn require_wrappingmul<T: WrappingMul>(_: &T) {}
require_wrappingmul(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingshl() {
fn require_wrappingshl<T: WrappingShl>(_: &T) {}
require_wrappingshl(&Wrapping(42));
}
#[test]
fn wrapping_is_wrappingshr() {
fn require_wrappingshr<T: WrappingShr>(_: &T) {}
require_wrappingshr(&Wrapping(42));
}

262
src/pow.rs Normal file
View File

@ -0,0 +1,262 @@
use core::num::Wrapping;
use core::ops::Mul;
use {CheckedMul, One};
/// Binary operator for raising a value to a power.
pub trait Pow<RHS> {
/// The result after applying the operator.
type Output;
/// Returns `self` to the power `rhs`.
///
/// # Examples
///
/// ```
/// use num_traits::Pow;
/// assert_eq!(Pow::pow(10u32, 2u32), 100);
/// ```
fn pow(self, rhs: RHS) -> Self::Output;
}
macro_rules! pow_impl {
($t:ty) => {
pow_impl!($t, u8);
pow_impl!($t, usize);
// FIXME: these should be possible
// pow_impl!($t, u16);
// pow_impl!($t, u32);
// pow_impl!($t, u64);
};
($t:ty, $rhs:ty) => {
pow_impl!($t, $rhs, usize, pow);
};
($t:ty, $rhs:ty, $desired_rhs:ty, $method:expr) => {
impl Pow<$rhs> for $t {
type Output = $t;
#[inline]
fn pow(self, rhs: $rhs) -> $t {
($method)(self, <$desired_rhs>::from(rhs))
}
}
impl<'a> Pow<&'a $rhs> for $t {
type Output = $t;
#[inline]
fn pow(self, rhs: &'a $rhs) -> $t {
($method)(self, <$desired_rhs>::from(*rhs))
}
}
impl<'a> Pow<$rhs> for &'a $t {
type Output = $t;
#[inline]
fn pow(self, rhs: $rhs) -> $t {
($method)(*self, <$desired_rhs>::from(rhs))
}
}
impl<'a, 'b> Pow<&'a $rhs> for &'b $t {
type Output = $t;
#[inline]
fn pow(self, rhs: &'a $rhs) -> $t {
($method)(*self, <$desired_rhs>::from(*rhs))
}
}
};
}
pow_impl!(u8, u8, u32, u8::pow);
pow_impl!(u8, u16, u32, u8::pow);
pow_impl!(u8, u32, u32, u8::pow);
pow_impl!(u8, usize);
pow_impl!(i8, u8, u32, i8::pow);
pow_impl!(i8, u16, u32, i8::pow);
pow_impl!(i8, u32, u32, i8::pow);
pow_impl!(i8, usize);
pow_impl!(u16, u8, u32, u16::pow);
pow_impl!(u16, u16, u32, u16::pow);
pow_impl!(u16, u32, u32, u16::pow);
pow_impl!(u16, usize);
pow_impl!(i16, u8, u32, i16::pow);
pow_impl!(i16, u16, u32, i16::pow);
pow_impl!(i16, u32, u32, i16::pow);
pow_impl!(i16, usize);
pow_impl!(u32, u8, u32, u32::pow);
pow_impl!(u32, u16, u32, u32::pow);
pow_impl!(u32, u32, u32, u32::pow);
pow_impl!(u32, usize);
pow_impl!(i32, u8, u32, i32::pow);
pow_impl!(i32, u16, u32, i32::pow);
pow_impl!(i32, u32, u32, i32::pow);
pow_impl!(i32, usize);
pow_impl!(u64, u8, u32, u64::pow);
pow_impl!(u64, u16, u32, u64::pow);
pow_impl!(u64, u32, u32, u64::pow);
pow_impl!(u64, usize);
pow_impl!(i64, u8, u32, i64::pow);
pow_impl!(i64, u16, u32, i64::pow);
pow_impl!(i64, u32, u32, i64::pow);
pow_impl!(i64, usize);
#[cfg(has_i128)]
pow_impl!(u128, u8, u32, u128::pow);
#[cfg(has_i128)]
pow_impl!(u128, u16, u32, u128::pow);
#[cfg(has_i128)]
pow_impl!(u128, u32, u32, u128::pow);
#[cfg(has_i128)]
pow_impl!(u128, usize);
#[cfg(has_i128)]
pow_impl!(i128, u8, u32, i128::pow);
#[cfg(has_i128)]
pow_impl!(i128, u16, u32, i128::pow);
#[cfg(has_i128)]
pow_impl!(i128, u32, u32, i128::pow);
#[cfg(has_i128)]
pow_impl!(i128, usize);
pow_impl!(usize, u8, u32, usize::pow);
pow_impl!(usize, u16, u32, usize::pow);
pow_impl!(usize, u32, u32, usize::pow);
pow_impl!(usize, usize);
pow_impl!(isize, u8, u32, isize::pow);
pow_impl!(isize, u16, u32, isize::pow);
pow_impl!(isize, u32, u32, isize::pow);
pow_impl!(isize, usize);
pow_impl!(Wrapping<u8>);
pow_impl!(Wrapping<i8>);
pow_impl!(Wrapping<u16>);
pow_impl!(Wrapping<i16>);
pow_impl!(Wrapping<u32>);
pow_impl!(Wrapping<i32>);
pow_impl!(Wrapping<u64>);
pow_impl!(Wrapping<i64>);
#[cfg(has_i128)]
pow_impl!(Wrapping<u128>);
#[cfg(has_i128)]
pow_impl!(Wrapping<i128>);
pow_impl!(Wrapping<usize>);
pow_impl!(Wrapping<isize>);
// FIXME: these should be possible
// pow_impl!(u8, u64);
// pow_impl!(i16, u64);
// pow_impl!(i8, u64);
// pow_impl!(u16, u64);
// pow_impl!(u32, u64);
// pow_impl!(i32, u64);
// pow_impl!(u64, u64);
// pow_impl!(i64, u64);
// pow_impl!(usize, u64);
// pow_impl!(isize, u64);
#[cfg(any(feature = "std", feature = "libm"))]
mod float_impls {
use super::Pow;
use Float;
pow_impl!(f32, i8, i32, <f32 as Float>::powi);
pow_impl!(f32, u8, i32, <f32 as Float>::powi);
pow_impl!(f32, i16, i32, <f32 as Float>::powi);
pow_impl!(f32, u16, i32, <f32 as Float>::powi);
pow_impl!(f32, i32, i32, <f32 as Float>::powi);
pow_impl!(f64, i8, i32, <f64 as Float>::powi);
pow_impl!(f64, u8, i32, <f64 as Float>::powi);
pow_impl!(f64, i16, i32, <f64 as Float>::powi);
pow_impl!(f64, u16, i32, <f64 as Float>::powi);
pow_impl!(f64, i32, i32, <f64 as Float>::powi);
pow_impl!(f32, f32, f32, <f32 as Float>::powf);
pow_impl!(f64, f32, f64, <f64 as Float>::powf);
pow_impl!(f64, f64, f64, <f64 as Float>::powf);
}
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// Note that `0⁰` (`pow(0, 0)`) returns `1`. Mathematically this is undefined.
///
/// # Example
///
/// ```rust
/// use num_traits::pow;
///
/// assert_eq!(pow(2i8, 4), 16);
/// assert_eq!(pow(6u8, 3), 216);
/// assert_eq!(pow(0u8, 0), 1); // Be aware if this case affects you
/// ```
#[inline]
pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
if exp == 0 {
return T::one();
}
while exp & 1 == 0 {
base = base.clone() * base;
exp >>= 1;
}
if exp == 1 {
return base;
}
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = base.clone() * base;
if exp & 1 == 1 {
acc = acc * base.clone();
}
}
acc
}
/// Raises a value to the power of exp, returning `None` if an overflow occurred.
///
/// Note that `0⁰` (`checked_pow(0, 0)`) returns `Some(1)`. Mathematically this is undefined.
///
/// Otherwise same as the `pow` function.
///
/// # Example
///
/// ```rust
/// use num_traits::checked_pow;
///
/// assert_eq!(checked_pow(2i8, 4), Some(16));
/// assert_eq!(checked_pow(7i8, 8), None);
/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801));
/// assert_eq!(checked_pow(0u32, 0), Some(1)); // Be aware if this case affect you
/// ```
#[inline]
pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
if exp == 0 {
return Some(T::one());
}
macro_rules! optry {
($expr:expr) => {
if let Some(val) = $expr {
val
} else {
return None;
}
};
}
while exp & 1 == 0 {
base = optry!(base.checked_mul(&base));
exp >>= 1;
}
if exp == 1 {
return Some(base);
}
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = optry!(base.checked_mul(&base));
if exp & 1 == 1 {
acc = optry!(acc.checked_mul(&base));
}
}
Some(acc)
}

834
src/real.rs Normal file
View File

@ -0,0 +1,834 @@
#![cfg(any(feature = "std", feature = "libm"))]
use core::ops::Neg;
use {Float, Num, NumCast};
// NOTE: These doctests have the same issue as those in src/float.rs.
// They're testing the inherent methods directly, and not those of `Real`.
/// A trait for real number types that do not necessarily have
/// floating-point-specific characteristics such as NaN and infinity.
///
/// See [this Wikipedia article](https://en.wikipedia.org/wiki/Real_data_type)
/// for a list of data types that could meaningfully implement this trait.
///
/// This trait is only available with the `std` feature, or with the `libm` feature otherwise.
pub trait Real: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> {
/// Returns the smallest finite value that this type can represent.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::min_value();
///
/// assert_eq!(x, f64::MIN);
/// ```
fn min_value() -> Self;
/// Returns the smallest positive, normalized value that this type can represent.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::min_positive_value();
///
/// assert_eq!(x, f64::MIN_POSITIVE);
/// ```
fn min_positive_value() -> Self;
/// Returns epsilon, a small positive value.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::epsilon();
///
/// assert_eq!(x, f64::EPSILON);
/// ```
///
/// # Panics
///
/// The default implementation will panic if `f32::EPSILON` cannot
/// be cast to `Self`.
fn epsilon() -> Self;
/// Returns the largest finite value that this type can represent.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x: f64 = Real::max_value();
/// assert_eq!(x, f64::MAX);
/// ```
fn max_value() -> Self;
/// Returns the largest integer less than or equal to a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.99;
/// let g = 3.0;
///
/// assert_eq!(f.floor(), 3.0);
/// assert_eq!(g.floor(), 3.0);
/// ```
fn floor(self) -> Self;
/// Returns the smallest integer greater than or equal to a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.01;
/// let g = 4.0;
///
/// assert_eq!(f.ceil(), 4.0);
/// assert_eq!(g.ceil(), 4.0);
/// ```
fn ceil(self) -> Self;
/// Returns the nearest integer to a number. Round half-way cases away from
/// `0.0`.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.3;
/// let g = -3.3;
///
/// assert_eq!(f.round(), 3.0);
/// assert_eq!(g.round(), -3.0);
/// ```
fn round(self) -> Self;
/// Return the integer part of a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 3.3;
/// let g = -3.7;
///
/// assert_eq!(f.trunc(), 3.0);
/// assert_eq!(g.trunc(), -3.0);
/// ```
fn trunc(self) -> Self;
/// Returns the fractional part of a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 3.5;
/// let y = -3.5;
/// let abs_difference_x = (x.fract() - 0.5).abs();
/// let abs_difference_y = (y.fract() - (-0.5)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
fn fract(self) -> Self;
/// Computes the absolute value of `self`. Returns `Float::nan()` if the
/// number is `Float::nan()`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = 3.5;
/// let y = -3.5;
///
/// let abs_difference_x = (x.abs() - x).abs();
/// let abs_difference_y = (y.abs() - (-y)).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
///
/// assert!(::num_traits::Float::is_nan(f64::NAN.abs()));
/// ```
fn abs(self) -> Self;
/// Returns a number that represents the sign of `self`.
///
/// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
/// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
/// - `Float::nan()` if the number is `Float::nan()`
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let f = 3.5;
///
/// assert_eq!(f.signum(), 1.0);
/// assert_eq!(f64::NEG_INFINITY.signum(), -1.0);
///
/// assert!(f64::NAN.signum().is_nan());
/// ```
fn signum(self) -> Self;
/// Returns `true` if `self` is positive, including `+0.0`,
/// `Float::infinity()`, and with newer versions of Rust `f64::NAN`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let neg_nan: f64 = -f64::NAN;
///
/// let f = 7.0;
/// let g = -7.0;
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// assert!(!neg_nan.is_sign_positive());
/// ```
fn is_sign_positive(self) -> bool;
/// Returns `true` if `self` is negative, including `-0.0`,
/// `Float::neg_infinity()`, and with newer versions of Rust `-f64::NAN`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let nan: f64 = f64::NAN;
///
/// let f = 7.0;
/// let g = -7.0;
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// assert!(!nan.is_sign_negative());
/// ```
fn is_sign_negative(self) -> bool;
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding
/// error, yielding a more accurate result than an unfused multiply-add.
///
/// Using `mul_add` can be more performant than an unfused multiply-add if
/// the target architecture has a dedicated `fma` CPU instruction.
///
/// ```
/// use num_traits::real::Real;
///
/// let m = 10.0;
/// let x = 4.0;
/// let b = 60.0;
///
/// // 100.0
/// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn mul_add(self, a: Self, b: Self) -> Self;
/// Take the reciprocal (inverse) of a number, `1/x`.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let abs_difference = (x.recip() - (1.0/x)).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn recip(self) -> Self;
/// Raise a number to an integer power.
///
/// Using this function is generally faster than using `powf`
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let abs_difference = (x.powi(2) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn powi(self, n: i32) -> Self;
/// Raise a number to a real number power.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let abs_difference = (x.powf(2.0) - x*x).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn powf(self, n: Self) -> Self;
/// Take the square root of a number.
///
/// Returns NaN if `self` is a negative floating-point number.
///
/// # Panics
///
/// If the implementing type doesn't support NaN, this method should panic if `self < 0`.
///
/// ```
/// use num_traits::real::Real;
///
/// let positive = 4.0;
/// let negative = -4.0;
///
/// let abs_difference = (positive.sqrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// assert!(::num_traits::Float::is_nan(negative.sqrt()));
/// ```
fn sqrt(self) -> Self;
/// Returns `e^(self)`, (the exponential function).
///
/// ```
/// use num_traits::real::Real;
///
/// let one = 1.0;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp(self) -> Self;
/// Returns `2^(self)`.
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 2.0;
///
/// // 2^2 - 4 == 0
/// let abs_difference = (f.exp2() - 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp2(self) -> Self;
/// Returns the natural logarithm of the number.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
/// ```
/// use num_traits::real::Real;
///
/// let one = 1.0;
/// // e^1
/// let e = one.exp();
///
/// // ln(e) - 1 == 0
/// let abs_difference = (e.ln() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn ln(self) -> Self;
/// Returns the logarithm of the number with respect to an arbitrary base.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
/// ```
/// use num_traits::real::Real;
///
/// let ten = 10.0;
/// let two = 2.0;
///
/// // log10(10) - 1 == 0
/// let abs_difference_10 = (ten.log(10.0) - 1.0).abs();
///
/// // log2(2) - 1 == 0
/// let abs_difference_2 = (two.log(2.0) - 1.0).abs();
///
/// assert!(abs_difference_10 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
fn log(self, base: Self) -> Self;
/// Returns the base 2 logarithm of the number.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
/// ```
/// use num_traits::real::Real;
///
/// let two = 2.0;
///
/// // log2(2) - 1 == 0
/// let abs_difference = (two.log2() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn log2(self) -> Self;
/// Returns the base 10 logarithm of the number.
///
/// # Panics
///
/// If `self <= 0` and this type does not support a NaN representation, this function should panic.
///
///
/// ```
/// use num_traits::real::Real;
///
/// let ten = 10.0;
///
/// // log10(10) - 1 == 0
/// let abs_difference = (ten.log10() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn log10(self) -> Self;
/// Converts radians to degrees.
///
/// ```
/// use std::f64::consts;
///
/// let angle = consts::PI;
///
/// let abs_difference = (angle.to_degrees() - 180.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn to_degrees(self) -> Self;
/// Converts degrees to radians.
///
/// ```
/// use std::f64::consts;
///
/// let angle = 180.0_f64;
///
/// let abs_difference = (angle.to_radians() - consts::PI).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn to_radians(self) -> Self;
/// Returns the maximum of the two numbers.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let y = 2.0;
///
/// assert_eq!(x.max(y), y);
/// ```
fn max(self, other: Self) -> Self;
/// Returns the minimum of the two numbers.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let y = 2.0;
///
/// assert_eq!(x.min(y), x);
/// ```
fn min(self, other: Self) -> Self;
/// The positive difference of two numbers.
///
/// * If `self <= other`: `0:0`
/// * Else: `self - other`
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 3.0;
/// let y = -3.0;
///
/// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
/// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
///
/// assert!(abs_difference_x < 1e-10);
/// assert!(abs_difference_y < 1e-10);
/// ```
fn abs_sub(self, other: Self) -> Self;
/// Take the cubic root of a number.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 8.0;
///
/// // x^(1/3) - 2 == 0
/// let abs_difference = (x.cbrt() - 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn cbrt(self) -> Self;
/// Calculate the length of the hypotenuse of a right-angle triangle given
/// legs of length `x` and `y`.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 2.0;
/// let y = 3.0;
///
/// // sqrt(x^2 + y^2)
/// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn hypot(self, other: Self) -> Self;
/// Computes the sine of a number (in radians).
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::PI/2.0;
///
/// let abs_difference = (x.sin() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn sin(self) -> Self;
/// Computes the cosine of a number (in radians).
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = 2.0*f64::consts::PI;
///
/// let abs_difference = (x.cos() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn cos(self) -> Self;
/// Computes the tangent of a number (in radians).
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let abs_difference = (x.tan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-14);
/// ```
fn tan(self) -> Self;
/// Computes the arcsine of a number. Return value is in radians in
/// the range [-pi/2, pi/2] or NaN if the number is outside the range
/// [-1, 1].
///
/// # Panics
///
/// If this type does not support a NaN representation, this function should panic
/// if the number is outside the range [-1, 1].
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let f = f64::consts::PI / 2.0;
///
/// // asin(sin(pi/2))
/// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn asin(self) -> Self;
/// Computes the arccosine of a number. Return value is in radians in
/// the range [0, pi] or NaN if the number is outside the range
/// [-1, 1].
///
/// # Panics
///
/// If this type does not support a NaN representation, this function should panic
/// if the number is outside the range [-1, 1].
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let f = f64::consts::PI / 4.0;
///
/// // acos(cos(pi/4))
/// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn acos(self) -> Self;
/// Computes the arctangent of a number. Return value is in radians in the
/// range [-pi/2, pi/2];
///
/// ```
/// use num_traits::real::Real;
///
/// let f = 1.0;
///
/// // atan(tan(1))
/// let abs_difference = (f.tan().atan() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn atan(self) -> Self;
/// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`).
///
/// * `x = 0`, `y = 0`: `0`
/// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
/// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
/// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let pi = f64::consts::PI;
/// // All angles from horizontal right (+x)
/// // 45 deg counter-clockwise
/// let x1 = 3.0;
/// let y1 = -3.0;
///
/// // 135 deg clockwise
/// let x2 = -3.0;
/// let y2 = 3.0;
///
/// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs();
/// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs();
///
/// assert!(abs_difference_1 < 1e-10);
/// assert!(abs_difference_2 < 1e-10);
/// ```
fn atan2(self, other: Self) -> Self;
/// Simultaneously computes the sine and cosine of the number, `x`. Returns
/// `(sin(x), cos(x))`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::PI/4.0;
/// let f = x.sin_cos();
///
/// let abs_difference_0 = (f.0 - x.sin()).abs();
/// let abs_difference_1 = (f.1 - x.cos()).abs();
///
/// assert!(abs_difference_0 < 1e-10);
/// assert!(abs_difference_0 < 1e-10);
/// ```
fn sin_cos(self) -> (Self, Self);
/// Returns `e^(self) - 1` in a way that is accurate even if the
/// number is close to zero.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 7.0;
///
/// // e^(ln(7)) - 1
/// let abs_difference = (x.ln().exp_m1() - 6.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn exp_m1(self) -> Self;
/// Returns `ln(1+n)` (natural logarithm) more accurately than if
/// the operations were performed separately.
///
/// # Panics
///
/// If this type does not support a NaN representation, this function should panic
/// if `self-1 <= 0`.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let x = f64::consts::E - 1.0;
///
/// // ln(1 + (e - 1)) == ln(e) == 1
/// let abs_difference = (x.ln_1p() - 1.0).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn ln_1p(self) -> Self;
/// Hyperbolic sine function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
///
/// let f = x.sinh();
/// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
/// let g = (e*e - 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1e-10);
/// ```
fn sinh(self) -> Self;
/// Hyperbolic cosine function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
/// let f = x.cosh();
/// // Solving cosh() at 1 gives this result
/// let g = (e*e + 1.0)/(2.0*e);
/// let abs_difference = (f - g).abs();
///
/// // Same result
/// assert!(abs_difference < 1.0e-10);
/// ```
fn cosh(self) -> Self;
/// Hyperbolic tangent function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let x = 1.0;
///
/// let f = x.tanh();
/// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
/// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2));
/// let abs_difference = (f - g).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn tanh(self) -> Self;
/// Inverse hyperbolic sine function.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let f = x.sinh().asinh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn asinh(self) -> Self;
/// Inverse hyperbolic cosine function.
///
/// ```
/// use num_traits::real::Real;
///
/// let x = 1.0;
/// let f = x.cosh().acosh();
///
/// let abs_difference = (f - x).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn acosh(self) -> Self;
/// Inverse hyperbolic tangent function.
///
/// ```
/// use num_traits::real::Real;
/// use std::f64;
///
/// let e = f64::consts::E;
/// let f = e.tanh().atanh();
///
/// let abs_difference = (f - e).abs();
///
/// assert!(abs_difference < 1.0e-10);
/// ```
fn atanh(self) -> Self;
}
impl<T: Float> Real for T {
forward! {
Float::min_value() -> Self;
Float::min_positive_value() -> Self;
Float::epsilon() -> Self;
Float::max_value() -> Self;
}
forward! {
Float::floor(self) -> Self;
Float::ceil(self) -> Self;
Float::round(self) -> Self;
Float::trunc(self) -> Self;
Float::fract(self) -> Self;
Float::abs(self) -> Self;
Float::signum(self) -> Self;
Float::is_sign_positive(self) -> bool;
Float::is_sign_negative(self) -> bool;
Float::mul_add(self, a: Self, b: Self) -> Self;
Float::recip(self) -> Self;
Float::powi(self, n: i32) -> Self;
Float::powf(self, n: Self) -> Self;
Float::sqrt(self) -> Self;
Float::exp(self) -> Self;
Float::exp2(self) -> Self;
Float::ln(self) -> Self;
Float::log(self, base: Self) -> Self;
Float::log2(self) -> Self;
Float::log10(self) -> Self;
Float::to_degrees(self) -> Self;
Float::to_radians(self) -> Self;
Float::max(self, other: Self) -> Self;
Float::min(self, other: Self) -> Self;
Float::abs_sub(self, other: Self) -> Self;
Float::cbrt(self) -> Self;
Float::hypot(self, other: Self) -> Self;
Float::sin(self) -> Self;
Float::cos(self) -> Self;
Float::tan(self) -> Self;
Float::asin(self) -> Self;
Float::acos(self) -> Self;
Float::atan(self) -> Self;
Float::atan2(self, other: Self) -> Self;
Float::sin_cos(self) -> (Self, Self);
Float::exp_m1(self) -> Self;
Float::ln_1p(self) -> Self;
Float::sinh(self) -> Self;
Float::cosh(self) -> Self;
Float::tanh(self) -> Self;
Float::asinh(self) -> Self;
Float::acosh(self) -> Self;
Float::atanh(self) -> Self;
}
}

View File

@ -1,6 +1,7 @@
use std::ops::Neg;
use std::{f32, f64};
use core::num::Wrapping;
use core::ops::Neg;
use float::FloatCore;
use Num;
/// Useful functions for signed numbers (i.e. numbers that can be negative).
@ -73,22 +74,58 @@ macro_rules! signed_impl {
signed_impl!(isize i8 i16 i32 i64);
#[cfg(has_i128)]
signed_impl!(i128);
impl<T: Signed> Signed for Wrapping<T>
where
Wrapping<T>: Num + Neg<Output = Wrapping<T>>,
{
#[inline]
fn abs(&self) -> Self {
Wrapping(self.0.abs())
}
#[inline]
fn abs_sub(&self, other: &Self) -> Self {
Wrapping(self.0.abs_sub(&other.0))
}
#[inline]
fn signum(&self) -> Self {
Wrapping(self.0.signum())
}
#[inline]
fn is_positive(&self) -> bool {
self.0.is_positive()
}
#[inline]
fn is_negative(&self) -> bool {
self.0.is_negative()
}
}
macro_rules! signed_float_impl {
($t:ty, $nan:expr, $inf:expr, $neg_inf:expr) => {
($t:ty) => {
impl Signed for $t {
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
fn abs(&self) -> $t {
<$t>::abs(*self)
FloatCore::abs(*self)
}
/// The positive difference of two numbers. Returns `0.0` if the number is
/// less than or equal to `other`, otherwise the difference between`self`
/// and `other` is returned.
#[inline]
#[allow(deprecated)]
fn abs_sub(&self, other: &$t) -> $t {
<$t>::abs_sub(*self, *other)
if *self <= *other {
0.
} else {
*self - *other
}
}
/// # Returns
@ -98,22 +135,26 @@ macro_rules! signed_float_impl {
/// - `NAN` if the number is NaN
#[inline]
fn signum(&self) -> $t {
<$t>::signum(*self)
FloatCore::signum(*self)
}
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
#[inline]
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == $inf }
fn is_positive(&self) -> bool {
FloatCore::is_sign_positive(*self)
}
/// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
#[inline]
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == $neg_inf }
fn is_negative(&self) -> bool {
FloatCore::is_sign_negative(*self)
}
}
}
};
}
signed_float_impl!(f32, f32::NAN, f32::INFINITY, f32::NEG_INFINITY);
signed_float_impl!(f64, f64::NAN, f64::INFINITY, f64::NEG_INFINITY);
signed_float_impl!(f32);
signed_float_impl!(f64);
/// Computes the absolute value.
///
@ -147,7 +188,10 @@ pub fn abs_sub<T: Signed>(x: T, y: T) -> T {
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
#[inline(always)] pub fn signum<T: Signed>(value: T) -> T { value.signum() }
#[inline(always)]
pub fn signum<T: Signed>(value: T) -> T {
value.signum()
}
/// A trait for values which cannot be negative
pub trait Unsigned: Num {}
@ -159,3 +203,23 @@ macro_rules! empty_trait_impl {
}
empty_trait_impl!(Unsigned for usize u8 u16 u32 u64);
#[cfg(has_i128)]
empty_trait_impl!(Unsigned for u128);
impl<T: Unsigned> Unsigned for Wrapping<T> where Wrapping<T>: Num {}
#[test]
fn unsigned_wrapping_is_unsigned() {
fn require_unsigned<T: Unsigned>(_: &T) {}
require_unsigned(&Wrapping(42_u32));
}
/*
// Commenting this out since it doesn't compile on Rust 1.8,
// because on this version Wrapping doesn't implement Neg and therefore can't
// implement Signed.
#[test]
fn signed_wrapping_is_signed() {
fn require_signed<T: Signed>(_: &T) {}
require_signed(&Wrapping(-42));
}
*/

396
tests/cast.rs Normal file
View File

@ -0,0 +1,396 @@
//! Tests of `num_traits::cast`.
#![no_std]
#[cfg(feature = "std")]
#[macro_use]
extern crate std;
extern crate num_traits;
use num_traits::cast::*;
use num_traits::Bounded;
use core::{f32, f64};
#[cfg(has_i128)]
use core::{i128, u128};
use core::{i16, i32, i64, i8, isize};
use core::{u16, u32, u64, u8, usize};
use core::fmt::Debug;
use core::mem;
use core::num::Wrapping;
#[test]
fn to_primitive_float() {
let f32_toolarge = 1e39f64;
assert_eq!(f32_toolarge.to_f32(), None);
assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX));
assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX));
assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY));
assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY));
assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan()));
}
#[test]
fn wrapping_to_primitive() {
macro_rules! test_wrapping_to_primitive {
($($t:ty)+) => {
$({
let i: $t = 0;
let w = Wrapping(i);
assert_eq!(i.to_u8(), w.to_u8());
assert_eq!(i.to_u16(), w.to_u16());
assert_eq!(i.to_u32(), w.to_u32());
assert_eq!(i.to_u64(), w.to_u64());
assert_eq!(i.to_usize(), w.to_usize());
assert_eq!(i.to_i8(), w.to_i8());
assert_eq!(i.to_i16(), w.to_i16());
assert_eq!(i.to_i32(), w.to_i32());
assert_eq!(i.to_i64(), w.to_i64());
assert_eq!(i.to_isize(), w.to_isize());
assert_eq!(i.to_f32(), w.to_f32());
assert_eq!(i.to_f64(), w.to_f64());
})+
};
}
test_wrapping_to_primitive!(usize u8 u16 u32 u64 isize i8 i16 i32 i64);
}
#[test]
fn wrapping_is_toprimitive() {
fn require_toprimitive<T: ToPrimitive>(_: &T) {}
require_toprimitive(&Wrapping(42));
}
#[test]
fn wrapping_is_fromprimitive() {
fn require_fromprimitive<T: FromPrimitive>(_: &T) {}
require_fromprimitive(&Wrapping(42));
}
#[test]
fn wrapping_is_numcast() {
fn require_numcast<T: NumCast>(_: &T) {}
require_numcast(&Wrapping(42));
}
#[test]
fn as_primitive() {
let x: f32 = (1.625f64).as_();
assert_eq!(x, 1.625f32);
let x: f32 = (3.14159265358979323846f64).as_();
assert_eq!(x, 3.1415927f32);
let x: u8 = (768i16).as_();
assert_eq!(x, 0);
}
#[test]
fn float_to_integer_checks_overflow() {
// This will overflow an i32
let source: f64 = 1.0e+123f64;
// Expect the overflow to be caught
assert_eq!(cast::<f64, i32>(source), None);
}
#[test]
fn cast_to_int_checks_overflow() {
let big_f: f64 = 1.0e123;
let normal_f: f64 = 1.0;
let small_f: f64 = -1.0e123;
assert_eq!(None, cast::<f64, isize>(big_f));
assert_eq!(None, cast::<f64, i8>(big_f));
assert_eq!(None, cast::<f64, i16>(big_f));
assert_eq!(None, cast::<f64, i32>(big_f));
assert_eq!(None, cast::<f64, i64>(big_f));
assert_eq!(Some(normal_f as isize), cast::<f64, isize>(normal_f));
assert_eq!(Some(normal_f as i8), cast::<f64, i8>(normal_f));
assert_eq!(Some(normal_f as i16), cast::<f64, i16>(normal_f));
assert_eq!(Some(normal_f as i32), cast::<f64, i32>(normal_f));
assert_eq!(Some(normal_f as i64), cast::<f64, i64>(normal_f));
assert_eq!(None, cast::<f64, isize>(small_f));
assert_eq!(None, cast::<f64, i8>(small_f));
assert_eq!(None, cast::<f64, i16>(small_f));
assert_eq!(None, cast::<f64, i32>(small_f));
assert_eq!(None, cast::<f64, i64>(small_f));
}
#[test]
fn cast_to_unsigned_int_checks_overflow() {
let big_f: f64 = 1.0e123;
let normal_f: f64 = 1.0;
let small_f: f64 = -1.0e123;
assert_eq!(None, cast::<f64, usize>(big_f));
assert_eq!(None, cast::<f64, u8>(big_f));
assert_eq!(None, cast::<f64, u16>(big_f));
assert_eq!(None, cast::<f64, u32>(big_f));
assert_eq!(None, cast::<f64, u64>(big_f));
assert_eq!(Some(normal_f as usize), cast::<f64, usize>(normal_f));
assert_eq!(Some(normal_f as u8), cast::<f64, u8>(normal_f));
assert_eq!(Some(normal_f as u16), cast::<f64, u16>(normal_f));
assert_eq!(Some(normal_f as u32), cast::<f64, u32>(normal_f));
assert_eq!(Some(normal_f as u64), cast::<f64, u64>(normal_f));
assert_eq!(None, cast::<f64, usize>(small_f));
assert_eq!(None, cast::<f64, u8>(small_f));
assert_eq!(None, cast::<f64, u16>(small_f));
assert_eq!(None, cast::<f64, u32>(small_f));
assert_eq!(None, cast::<f64, u64>(small_f));
}
#[test]
#[cfg(has_i128)]
fn cast_to_i128_checks_overflow() {
let big_f: f64 = 1.0e123;
let normal_f: f64 = 1.0;
let small_f: f64 = -1.0e123;
assert_eq!(None, cast::<f64, i128>(big_f));
assert_eq!(None, cast::<f64, u128>(big_f));
assert_eq!(Some(normal_f as i128), cast::<f64, i128>(normal_f));
assert_eq!(Some(normal_f as u128), cast::<f64, u128>(normal_f));
assert_eq!(None, cast::<f64, i128>(small_f));
assert_eq!(None, cast::<f64, u128>(small_f));
}
#[cfg(feature = "std")]
fn dbg(args: ::core::fmt::Arguments) {
println!("{}", args);
}
#[cfg(not(feature = "std"))]
fn dbg(_: ::core::fmt::Arguments) {}
// Rust 1.8 doesn't handle cfg on macros correctly
macro_rules! dbg { ($($tok:tt)*) => { dbg(format_args!($($tok)*)) } }
macro_rules! float_test_edge {
($f:ident -> $($t:ident)+) => { $({
dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t));
let small = if $t::MIN == 0 || mem::size_of::<$t>() < mem::size_of::<$f>() {
$t::MIN as $f - 1.0
} else {
($t::MIN as $f).raw_offset(1).floor()
};
let fmin = small.raw_offset(-1);
dbg!(" testing min {}\n\tvs. {:.0}\n\tand {:.0}", $t::MIN, fmin, small);
assert_eq!(Some($t::MIN), cast::<$f, $t>($t::MIN as $f));
assert_eq!(Some($t::MIN), cast::<$f, $t>(fmin));
assert_eq!(None, cast::<$f, $t>(small));
let (max, large) = if mem::size_of::<$t>() < mem::size_of::<$f>() {
($t::MAX, $t::MAX as $f + 1.0)
} else {
let large = $t::MAX as $f; // rounds up!
let max = large.raw_offset(-1) as $t; // the next smallest possible
assert_eq!(max.count_ones(), $f::MANTISSA_DIGITS);
(max, large)
};
let fmax = large.raw_offset(-1);
dbg!(" testing max {}\n\tvs. {:.0}\n\tand {:.0}", max, fmax, large);
assert_eq!(Some(max), cast::<$f, $t>(max as $f));
assert_eq!(Some(max), cast::<$f, $t>(fmax));
assert_eq!(None, cast::<$f, $t>(large));
dbg!(" testing non-finite values");
assert_eq!(None, cast::<$f, $t>($f::NAN));
assert_eq!(None, cast::<$f, $t>($f::INFINITY));
assert_eq!(None, cast::<$f, $t>($f::NEG_INFINITY));
})+}
}
trait RawOffset: Sized {
type Raw;
fn raw_offset(self, offset: Self::Raw) -> Self;
}
impl RawOffset for f32 {
type Raw = i32;
fn raw_offset(self, offset: Self::Raw) -> Self {
unsafe {
let raw: Self::Raw = mem::transmute(self);
mem::transmute(raw + offset)
}
}
}
impl RawOffset for f64 {
type Raw = i64;
fn raw_offset(self, offset: Self::Raw) -> Self {
unsafe {
let raw: Self::Raw = mem::transmute(self);
mem::transmute(raw + offset)
}
}
}
#[test]
fn cast_float_to_int_edge_cases() {
float_test_edge!(f32 -> isize i8 i16 i32 i64);
float_test_edge!(f32 -> usize u8 u16 u32 u64);
float_test_edge!(f64 -> isize i8 i16 i32 i64);
float_test_edge!(f64 -> usize u8 u16 u32 u64);
}
#[test]
#[cfg(has_i128)]
fn cast_float_to_i128_edge_cases() {
float_test_edge!(f32 -> i128 u128);
float_test_edge!(f64 -> i128 u128);
}
macro_rules! int_test_edge {
($f:ident -> { $($t:ident)+ } with $BigS:ident $BigU:ident ) => { $({
fn test_edge() {
dbg!("testing cast edge cases for {} -> {}", stringify!($f), stringify!($t));
match ($f::MIN as $BigS).cmp(&($t::MIN as $BigS)) {
Greater => {
assert_eq!(Some($f::MIN as $t), cast::<$f, $t>($f::MIN));
}
Equal => {
assert_eq!(Some($t::MIN), cast::<$f, $t>($f::MIN));
}
Less => {
let min = $t::MIN as $f;
assert_eq!(Some($t::MIN), cast::<$f, $t>(min));
assert_eq!(None, cast::<$f, $t>(min - 1));
}
}
match ($f::MAX as $BigU).cmp(&($t::MAX as $BigU)) {
Greater => {
let max = $t::MAX as $f;
assert_eq!(Some($t::MAX), cast::<$f, $t>(max));
assert_eq!(None, cast::<$f, $t>(max + 1));
}
Equal => {
assert_eq!(Some($t::MAX), cast::<$f, $t>($f::MAX));
}
Less => {
assert_eq!(Some($f::MAX as $t), cast::<$f, $t>($f::MAX));
}
}
}
test_edge();
})+}
}
#[test]
fn cast_int_to_int_edge_cases() {
use core::cmp::Ordering::*;
macro_rules! test_edge {
($( $from:ident )+) => { $({
int_test_edge!($from -> { isize i8 i16 i32 i64 } with i64 u64);
int_test_edge!($from -> { usize u8 u16 u32 u64 } with i64 u64);
})+}
}
test_edge!(isize i8 i16 i32 i64);
test_edge!(usize u8 u16 u32 u64);
}
#[test]
#[cfg(has_i128)]
fn cast_int_to_128_edge_cases() {
use core::cmp::Ordering::*;
macro_rules! test_edge {
($( $t:ident )+) => {
$(
int_test_edge!($t -> { i128 u128 } with i128 u128);
)+
int_test_edge!(i128 -> { $( $t )+ } with i128 u128);
int_test_edge!(u128 -> { $( $t )+ } with i128 u128);
}
}
test_edge!(isize i8 i16 i32 i64 i128);
test_edge!(usize u8 u16 u32 u64 u128);
}
#[test]
fn newtype_from_primitive() {
#[derive(PartialEq, Debug)]
struct New<T>(T);
// minimal impl
impl<T: FromPrimitive> FromPrimitive for New<T> {
fn from_i64(n: i64) -> Option<Self> {
T::from_i64(n).map(New)
}
fn from_u64(n: u64) -> Option<Self> {
T::from_u64(n).map(New)
}
}
macro_rules! assert_eq_from {
($( $from:ident )+) => {$(
assert_eq!(T::$from(Bounded::min_value()).map(New),
New::<T>::$from(Bounded::min_value()));
assert_eq!(T::$from(Bounded::max_value()).map(New),
New::<T>::$from(Bounded::max_value()));
)+}
}
fn check<T: PartialEq + Debug + FromPrimitive>() {
assert_eq_from!(from_i8 from_i16 from_i32 from_i64 from_isize);
assert_eq_from!(from_u8 from_u16 from_u32 from_u64 from_usize);
assert_eq_from!(from_f32 from_f64);
}
macro_rules! check {
($( $ty:ty )+) => {$( check::<$ty>(); )+}
}
check!(i8 i16 i32 i64 isize);
check!(u8 u16 u32 u64 usize);
}
#[test]
fn newtype_to_primitive() {
#[derive(PartialEq, Debug)]
struct New<T>(T);
// minimal impl
impl<T: ToPrimitive> ToPrimitive for New<T> {
fn to_i64(&self) -> Option<i64> {
self.0.to_i64()
}
fn to_u64(&self) -> Option<u64> {
self.0.to_u64()
}
}
macro_rules! assert_eq_to {
($( $to:ident )+) => {$(
assert_eq!(T::$to(&Bounded::min_value()),
New::<T>::$to(&New(Bounded::min_value())));
assert_eq!(T::$to(&Bounded::max_value()),
New::<T>::$to(&New(Bounded::max_value())));
)+}
}
fn check<T: PartialEq + Debug + Bounded + ToPrimitive>() {
assert_eq_to!(to_i8 to_i16 to_i32 to_i64 to_isize);
assert_eq_to!(to_u8 to_u16 to_u32 to_u64 to_usize);
assert_eq_to!(to_f32 to_f64);
}
macro_rules! check {
($( $ty:ty )+) => {$( check::<$ty>(); )+}
}
check!(i8 i16 i32 i64 isize);
check!(u8 u16 u32 u64 usize);
}

View File

@ -1,12 +0,0 @@
[package]
authors = ["The Rust Project Developers"]
description = "Numeric traits for generic mathematics"
documentation = "http://rust-num.github.io/num"
homepage = "https://github.com/rust-num/num"
keywords = ["mathematics", "numerics"]
license = "MIT/Apache-2.0"
repository = "https://github.com/rust-num/num"
name = "num-traits"
version = "0.1.35"
[dependencies]

View File

@ -1,71 +0,0 @@
use std::{usize, u8, u16, u32, u64};
use std::{isize, i8, i16, i32, i64};
use std::{f32, f64};
/// Numbers which have upper and lower bounds
pub trait Bounded {
// FIXME (#5527): These should be associated constants
/// returns the smallest finite number this type can represent
fn min_value() -> Self;
/// returns the largest finite number this type can represent
fn max_value() -> Self;
}
macro_rules! bounded_impl {
($t:ty, $min:expr, $max:expr) => {
impl Bounded for $t {
#[inline]
fn min_value() -> $t { $min }
#[inline]
fn max_value() -> $t { $max }
}
}
}
bounded_impl!(usize, usize::MIN, usize::MAX);
bounded_impl!(u8, u8::MIN, u8::MAX);
bounded_impl!(u16, u16::MIN, u16::MAX);
bounded_impl!(u32, u32::MIN, u32::MAX);
bounded_impl!(u64, u64::MIN, u64::MAX);
bounded_impl!(isize, isize::MIN, isize::MAX);
bounded_impl!(i8, i8::MIN, i8::MAX);
bounded_impl!(i16, i16::MIN, i16::MAX);
bounded_impl!(i32, i32::MIN, i32::MAX);
bounded_impl!(i64, i64::MIN, i64::MAX);
bounded_impl!(f32, f32::MIN, f32::MAX);
macro_rules! for_each_tuple_ {
( $m:ident !! ) => (
$m! { }
);
( $m:ident !! $h:ident, $($t:ident,)* ) => (
$m! { $h $($t)* }
for_each_tuple_! { $m !! $($t,)* }
);
}
macro_rules! for_each_tuple {
( $m:ident ) => (
for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, }
);
}
macro_rules! bounded_tuple {
( $($name:ident)* ) => (
impl<$($name: Bounded,)*> Bounded for ($($name,)*) {
#[inline]
fn min_value() -> Self {
($($name::min_value(),)*)
}
#[inline]
fn max_value() -> Self {
($($name::max_value(),)*)
}
}
);
}
for_each_tuple!(bounded_tuple);
bounded_impl!(f64, f64::MIN, f64::MAX);

View File

@ -1,450 +0,0 @@
use std::mem::size_of;
use identities::Zero;
use bounds::Bounded;
/// A generic trait for converting a value to a number.
pub trait ToPrimitive {
/// Converts the value of `self` to an `isize`.
#[inline]
fn to_isize(&self) -> Option<isize> {
self.to_i64().and_then(|x| x.to_isize())
}
/// Converts the value of `self` to an `i8`.
#[inline]
fn to_i8(&self) -> Option<i8> {
self.to_i64().and_then(|x| x.to_i8())
}
/// Converts the value of `self` to an `i16`.
#[inline]
fn to_i16(&self) -> Option<i16> {
self.to_i64().and_then(|x| x.to_i16())
}
/// Converts the value of `self` to an `i32`.
#[inline]
fn to_i32(&self) -> Option<i32> {
self.to_i64().and_then(|x| x.to_i32())
}
/// Converts the value of `self` to an `i64`.
fn to_i64(&self) -> Option<i64>;
/// Converts the value of `self` to a `usize`.
#[inline]
fn to_usize(&self) -> Option<usize> {
self.to_u64().and_then(|x| x.to_usize())
}
/// Converts the value of `self` to an `u8`.
#[inline]
fn to_u8(&self) -> Option<u8> {
self.to_u64().and_then(|x| x.to_u8())
}
/// Converts the value of `self` to an `u16`.
#[inline]
fn to_u16(&self) -> Option<u16> {
self.to_u64().and_then(|x| x.to_u16())
}
/// Converts the value of `self` to an `u32`.
#[inline]
fn to_u32(&self) -> Option<u32> {
self.to_u64().and_then(|x| x.to_u32())
}
/// Converts the value of `self` to an `u64`.
#[inline]
fn to_u64(&self) -> Option<u64>;
/// Converts the value of `self` to an `f32`.
#[inline]
fn to_f32(&self) -> Option<f32> {
self.to_f64().and_then(|x| x.to_f32())
}
/// Converts the value of `self` to an `f64`.
#[inline]
fn to_f64(&self) -> Option<f64> {
self.to_i64().and_then(|x| x.to_f64())
}
}
macro_rules! impl_to_primitive_int_to_int {
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some($slf as $DstT)
} else {
let n = $slf as i64;
let min_value: $DstT = Bounded::min_value();
let max_value: $DstT = Bounded::max_value();
if min_value as i64 <= n && n <= max_value as i64 {
Some($slf as $DstT)
} else {
None
}
}
}
)
}
macro_rules! impl_to_primitive_int_to_uint {
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
let zero: $SrcT = Zero::zero();
let max_value: $DstT = Bounded::max_value();
if zero <= $slf && $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_int {
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
fn to_isize(&self) -> Option<isize> { impl_to_primitive_int_to_int!($T, isize, *self) }
#[inline]
fn to_i8(&self) -> Option<i8> { impl_to_primitive_int_to_int!($T, i8, *self) }
#[inline]
fn to_i16(&self) -> Option<i16> { impl_to_primitive_int_to_int!($T, i16, *self) }
#[inline]
fn to_i32(&self) -> Option<i32> { impl_to_primitive_int_to_int!($T, i32, *self) }
#[inline]
fn to_i64(&self) -> Option<i64> { impl_to_primitive_int_to_int!($T, i64, *self) }
#[inline]
fn to_usize(&self) -> Option<usize> { impl_to_primitive_int_to_uint!($T, usize, *self) }
#[inline]
fn to_u8(&self) -> Option<u8> { impl_to_primitive_int_to_uint!($T, u8, *self) }
#[inline]
fn to_u16(&self) -> Option<u16> { impl_to_primitive_int_to_uint!($T, u16, *self) }
#[inline]
fn to_u32(&self) -> Option<u32> { impl_to_primitive_int_to_uint!($T, u32, *self) }
#[inline]
fn to_u64(&self) -> Option<u64> { impl_to_primitive_int_to_uint!($T, u64, *self) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
}
impl_to_primitive_int!(isize);
impl_to_primitive_int!(i8);
impl_to_primitive_int!(i16);
impl_to_primitive_int!(i32);
impl_to_primitive_int!(i64);
macro_rules! impl_to_primitive_uint_to_int {
($DstT:ty, $slf:expr) => (
{
let max_value: $DstT = Bounded::max_value();
if $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_uint_to_uint {
($SrcT:ty, $DstT:ty, $slf:expr) => (
{
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some($slf as $DstT)
} else {
let zero: $SrcT = Zero::zero();
let max_value: $DstT = Bounded::max_value();
if zero <= $slf && $slf as u64 <= max_value as u64 {
Some($slf as $DstT)
} else {
None
}
}
}
)
}
macro_rules! impl_to_primitive_uint {
($T:ty) => (
impl ToPrimitive for $T {
#[inline]
fn to_isize(&self) -> Option<isize> { impl_to_primitive_uint_to_int!(isize, *self) }
#[inline]
fn to_i8(&self) -> Option<i8> { impl_to_primitive_uint_to_int!(i8, *self) }
#[inline]
fn to_i16(&self) -> Option<i16> { impl_to_primitive_uint_to_int!(i16, *self) }
#[inline]
fn to_i32(&self) -> Option<i32> { impl_to_primitive_uint_to_int!(i32, *self) }
#[inline]
fn to_i64(&self) -> Option<i64> { impl_to_primitive_uint_to_int!(i64, *self) }
#[inline]
fn to_usize(&self) -> Option<usize> {
impl_to_primitive_uint_to_uint!($T, usize, *self)
}
#[inline]
fn to_u8(&self) -> Option<u8> { impl_to_primitive_uint_to_uint!($T, u8, *self) }
#[inline]
fn to_u16(&self) -> Option<u16> { impl_to_primitive_uint_to_uint!($T, u16, *self) }
#[inline]
fn to_u32(&self) -> Option<u32> { impl_to_primitive_uint_to_uint!($T, u32, *self) }
#[inline]
fn to_u64(&self) -> Option<u64> { impl_to_primitive_uint_to_uint!($T, u64, *self) }
#[inline]
fn to_f32(&self) -> Option<f32> { Some(*self as f32) }
#[inline]
fn to_f64(&self) -> Option<f64> { Some(*self as f64) }
}
)
}
impl_to_primitive_uint!(usize);
impl_to_primitive_uint!(u8);
impl_to_primitive_uint!(u16);
impl_to_primitive_uint!(u32);
impl_to_primitive_uint!(u64);
macro_rules! impl_to_primitive_float_to_float {
($SrcT:ident, $DstT:ident, $slf:expr) => (
if size_of::<$SrcT>() <= size_of::<$DstT>() {
Some($slf as $DstT)
} else {
// Make sure the value is in range for the cast.
// NaN and +-inf are cast as they are.
let n = $slf as f64;
let max_value: $DstT = ::std::$DstT::MAX;
if !n.is_finite() || (-max_value as f64 <= n && n <= max_value as f64) {
Some($slf as $DstT)
} else {
None
}
}
)
}
macro_rules! impl_to_primitive_float {
($T:ident) => (
impl ToPrimitive for $T {
#[inline]
fn to_isize(&self) -> Option<isize> { Some(*self as isize) }
#[inline]
fn to_i8(&self) -> Option<i8> { Some(*self as i8) }
#[inline]
fn to_i16(&self) -> Option<i16> { Some(*self as i16) }
#[inline]
fn to_i32(&self) -> Option<i32> { Some(*self as i32) }
#[inline]
fn to_i64(&self) -> Option<i64> { Some(*self as i64) }
#[inline]
fn to_usize(&self) -> Option<usize> { Some(*self as usize) }
#[inline]
fn to_u8(&self) -> Option<u8> { Some(*self as u8) }
#[inline]
fn to_u16(&self) -> Option<u16> { Some(*self as u16) }
#[inline]
fn to_u32(&self) -> Option<u32> { Some(*self as u32) }
#[inline]
fn to_u64(&self) -> Option<u64> { Some(*self as u64) }
#[inline]
fn to_f32(&self) -> Option<f32> { impl_to_primitive_float_to_float!($T, f32, *self) }
#[inline]
fn to_f64(&self) -> Option<f64> { impl_to_primitive_float_to_float!($T, f64, *self) }
}
)
}
impl_to_primitive_float!(f32);
impl_to_primitive_float!(f64);
/// A generic trait for converting a number to a value.
pub trait FromPrimitive: Sized {
/// Convert an `isize` to return an optional value of this type. If the
/// value cannot be represented by this value, the `None` is returned.
#[inline]
fn from_isize(n: isize) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i8(n: i8) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i16(n: i16) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_i32(n: i32) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
/// Convert an `i64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_i64(n: i64) -> Option<Self>;
/// Convert a `usize` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_usize(n: usize) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u8` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u8(n: u8) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u16` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u16(n: u16) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_u32(n: u32) -> Option<Self> {
FromPrimitive::from_u64(n as u64)
}
/// Convert an `u64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
fn from_u64(n: u64) -> Option<Self>;
/// Convert a `f32` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f32(n: f32) -> Option<Self> {
FromPrimitive::from_f64(n as f64)
}
/// Convert a `f64` to return an optional value of this type. If the
/// type cannot be represented by this value, the `None` is returned.
#[inline]
fn from_f64(n: f64) -> Option<Self> {
FromPrimitive::from_i64(n as i64)
}
}
macro_rules! impl_from_primitive {
($T:ty, $to_ty:ident) => (
#[allow(deprecated)]
impl FromPrimitive for $T {
#[inline] fn from_i8(n: i8) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i16(n: i16) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i32(n: i32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_i64(n: i64) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u8(n: u8) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u16(n: u16) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u32(n: u32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_u64(n: u64) -> Option<$T> { n.$to_ty() }
#[inline] fn from_f32(n: f32) -> Option<$T> { n.$to_ty() }
#[inline] fn from_f64(n: f64) -> Option<$T> { n.$to_ty() }
}
)
}
impl_from_primitive!(isize, to_isize);
impl_from_primitive!(i8, to_i8);
impl_from_primitive!(i16, to_i16);
impl_from_primitive!(i32, to_i32);
impl_from_primitive!(i64, to_i64);
impl_from_primitive!(usize, to_usize);
impl_from_primitive!(u8, to_u8);
impl_from_primitive!(u16, to_u16);
impl_from_primitive!(u32, to_u32);
impl_from_primitive!(u64, to_u64);
impl_from_primitive!(f32, to_f32);
impl_from_primitive!(f64, to_f64);
/// Cast from one machine scalar to another.
///
/// # Examples
///
/// ```
/// # use num_traits as num;
/// let twenty: f32 = num::cast(0x14).unwrap();
/// assert_eq!(twenty, 20f32);
/// ```
///
#[inline]
pub fn cast<T: NumCast, U: NumCast>(n: T) -> Option<U> {
NumCast::from(n)
}
/// An interface for casting between machine scalars.
pub trait NumCast: Sized + ToPrimitive {
/// Creates a number from another value that can be converted into
/// a primitive via the `ToPrimitive` trait.
fn from<T: ToPrimitive>(n: T) -> Option<Self>;
}
macro_rules! impl_num_cast {
($T:ty, $conv:ident) => (
impl NumCast for $T {
#[inline]
#[allow(deprecated)]
fn from<N: ToPrimitive>(n: N) -> Option<$T> {
// `$conv` could be generated using `concat_idents!`, but that
// macro seems to be broken at the moment
n.$conv()
}
}
)
}
impl_num_cast!(u8, to_u8);
impl_num_cast!(u16, to_u16);
impl_num_cast!(u32, to_u32);
impl_num_cast!(u64, to_u64);
impl_num_cast!(usize, to_usize);
impl_num_cast!(i8, to_i8);
impl_num_cast!(i16, to_i16);
impl_num_cast!(i32, to_i32);
impl_num_cast!(i64, to_i64);
impl_num_cast!(isize, to_isize);
impl_num_cast!(f32, to_f32);
impl_num_cast!(f64, to_f64);
#[test]
fn to_primitive_float() {
use std::f32;
use std::f64;
let f32_toolarge = 1e39f64;
assert_eq!(f32_toolarge.to_f32(), None);
assert_eq!((f32::MAX as f64).to_f32(), Some(f32::MAX));
assert_eq!((-f32::MAX as f64).to_f32(), Some(-f32::MAX));
assert_eq!(f64::INFINITY.to_f32(), Some(f32::INFINITY));
assert_eq!((f64::NEG_INFINITY).to_f32(), Some(f32::NEG_INFINITY));
assert!((f64::NAN).to_f32().map_or(false, |f| f.is_nan()));
}

File diff suppressed because it is too large Load Diff

View File

@ -1,104 +0,0 @@
use std::ops::{Add, Mul};
/// Defines an additive identity element for `Self`.
pub trait Zero: Sized + Add<Self, Output = Self> {
/// Returns the additive identity element of `Self`, `0`.
///
/// # Laws
///
/// ```{.text}
/// a + 0 = a ∀ a ∈ Self
/// 0 + a = a ∀ a ∈ Self
/// ```
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// FIXME (#5527): This should be an associated constant
fn zero() -> Self;
/// Returns `true` if `self` is equal to the additive identity.
#[inline]
fn is_zero(&self) -> bool;
}
macro_rules! zero_impl {
($t:ty, $v:expr) => {
impl Zero for $t {
#[inline]
fn zero() -> $t { $v }
#[inline]
fn is_zero(&self) -> bool { *self == $v }
}
}
}
zero_impl!(usize, 0usize);
zero_impl!(u8, 0u8);
zero_impl!(u16, 0u16);
zero_impl!(u32, 0u32);
zero_impl!(u64, 0u64);
zero_impl!(isize, 0isize);
zero_impl!(i8, 0i8);
zero_impl!(i16, 0i16);
zero_impl!(i32, 0i32);
zero_impl!(i64, 0i64);
zero_impl!(f32, 0.0f32);
zero_impl!(f64, 0.0f64);
/// Defines a multiplicative identity element for `Self`.
pub trait One: Sized + Mul<Self, Output = Self> {
/// Returns the multiplicative identity element of `Self`, `1`.
///
/// # Laws
///
/// ```{.text}
/// a * 1 = a ∀ a ∈ Self
/// 1 * a = a ∀ a ∈ Self
/// ```
///
/// # Purity
///
/// This function should return the same result at all times regardless of
/// external mutable state, for example values stored in TLS or in
/// `static mut`s.
// FIXME (#5527): This should be an associated constant
fn one() -> Self;
}
macro_rules! one_impl {
($t:ty, $v:expr) => {
impl One for $t {
#[inline]
fn one() -> $t { $v }
}
}
}
one_impl!(usize, 1usize);
one_impl!(u8, 1u8);
one_impl!(u16, 1u16);
one_impl!(u32, 1u32);
one_impl!(u64, 1u64);
one_impl!(isize, 1isize);
one_impl!(i8, 1i8);
one_impl!(i16, 1i16);
one_impl!(i32, 1i32);
one_impl!(i64, 1i64);
one_impl!(f32, 1.0f32);
one_impl!(f64, 1.0f64);
// Some helper functions provided for backwards compatibility.
/// Returns the additive identity, `0`.
#[inline(always)] pub fn zero<T: Zero>() -> T { Zero::zero() }
/// Returns the multiplicative identity, `1`.
#[inline(always)] pub fn one<T: One>() -> T { One::one() }

View File

@ -1,236 +0,0 @@
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Numeric traits for generic mathematics
use std::ops::{Add, Sub, Mul, Div, Rem};
pub use bounds::Bounded;
pub use float::{Float, FloatConst};
pub use identities::{Zero, One, zero, one};
pub use ops::checked::*;
pub use ops::saturating::Saturating;
pub use sign::{Signed, Unsigned, abs, abs_sub, signum};
pub use cast::*;
pub use int::PrimInt;
pub use pow::{pow, checked_pow};
pub mod identities;
pub mod sign;
pub mod ops;
pub mod bounds;
pub mod float;
pub mod cast;
pub mod int;
pub mod pow;
/// The base trait for numeric types
pub trait Num: PartialEq + Zero + One
+ Add<Output = Self> + Sub<Output = Self>
+ Mul<Output = Self> + Div<Output = Self> + Rem<Output = Self>
{
type FromStrRadixErr;
/// Convert from a string and radix <= 36.
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr>;
}
macro_rules! int_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ::std::num::ParseIntError;
#[inline]
fn from_str_radix(s: &str, radix: u32)
-> Result<Self, ::std::num::ParseIntError>
{
<$t>::from_str_radix(s, radix)
}
}
)*)
}
int_trait_impl!(Num for usize u8 u16 u32 u64 isize i8 i16 i32 i64);
#[derive(Debug)]
pub enum FloatErrorKind {
Empty,
Invalid,
}
// FIXME: std::num::ParseFloatError is stable in 1.0, but opaque to us,
// so there's not really any way for us to reuse it.
#[derive(Debug)]
pub struct ParseFloatError {
pub kind: FloatErrorKind,
}
// FIXME: The standard library from_str_radix on floats was deprecated, so we're stuck
// with this implementation ourselves until we want to make a breaking change.
// (would have to drop it from `Num` though)
macro_rules! float_trait_impl {
($name:ident for $($t:ty)*) => ($(
impl $name for $t {
type FromStrRadixErr = ParseFloatError;
fn from_str_radix(src: &str, radix: u32)
-> Result<Self, Self::FromStrRadixErr>
{
use self::FloatErrorKind::*;
use self::ParseFloatError as PFE;
// Special values
match src {
"inf" => return Ok(Float::infinity()),
"-inf" => return Ok(Float::neg_infinity()),
"NaN" => return Ok(Float::nan()),
_ => {},
}
fn slice_shift_char(src: &str) -> Option<(char, &str)> {
src.chars().nth(0).map(|ch| (ch, &src[1..]))
}
let (is_positive, src) = match slice_shift_char(src) {
None => return Err(PFE { kind: Empty }),
Some(('-', "")) => return Err(PFE { kind: Empty }),
Some(('-', src)) => (false, src),
Some((_, _)) => (true, src),
};
// The significand to accumulate
let mut sig = if is_positive { 0.0 } else { -0.0 };
// Necessary to detect overflow
let mut prev_sig = sig;
let mut cs = src.chars().enumerate();
// Exponent prefix and exponent index offset
let mut exp_info = None::<(char, usize)>;
// Parse the integer part of the significand
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// shift significand one digit left
sig = sig * (radix as $t);
// add/subtract current digit depending on sign
if is_positive {
sig = sig + ((digit as isize) as $t);
} else {
sig = sig - ((digit as isize) as $t);
}
// Detect overflow by comparing to last value, except
// if we've not seen any non-zero digits.
if prev_sig != 0.0 {
if is_positive && sig <= prev_sig
{ return Ok(Float::infinity()); }
if !is_positive && sig >= prev_sig
{ return Ok(Float::neg_infinity()); }
// Detect overflow by reversing the shift-and-add process
if is_positive && (prev_sig != (sig - digit as $t) / radix as $t)
{ return Ok(Float::infinity()); }
if !is_positive && (prev_sig != (sig + digit as $t) / radix as $t)
{ return Ok(Float::neg_infinity()); }
}
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
'.' => {
break; // start of fractional part
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
// If we are not yet at the exponent parse the fractional
// part of the significand
if exp_info.is_none() {
let mut power = 1.0;
for (i, c) in cs.by_ref() {
match c.to_digit(radix) {
Some(digit) => {
// Decrease power one order of magnitude
power = power / (radix as $t);
// add/subtract current digit depending on sign
sig = if is_positive {
sig + (digit as $t) * power
} else {
sig - (digit as $t) * power
};
// Detect overflow by comparing to last value
if is_positive && sig < prev_sig
{ return Ok(Float::infinity()); }
if !is_positive && sig > prev_sig
{ return Ok(Float::neg_infinity()); }
prev_sig = sig;
},
None => match c {
'e' | 'E' | 'p' | 'P' => {
exp_info = Some((c, i + 1));
break; // start of exponent
},
_ => {
return Err(PFE { kind: Invalid });
},
},
}
}
}
// Parse and calculate the exponent
let exp = match exp_info {
Some((c, offset)) => {
let base = match c {
'E' | 'e' if radix == 10 => 10.0,
'P' | 'p' if radix == 16 => 2.0,
_ => return Err(PFE { kind: Invalid }),
};
// Parse the exponent as decimal integer
let src = &src[offset..];
let (is_positive, exp) = match slice_shift_char(src) {
Some(('-', src)) => (false, src.parse::<usize>()),
Some(('+', src)) => (true, src.parse::<usize>()),
Some((_, _)) => (true, src.parse::<usize>()),
None => return Err(PFE { kind: Invalid }),
};
match (is_positive, exp) {
(true, Ok(exp)) => base.powi(exp as i32),
(false, Ok(exp)) => 1.0 / base.powi(exp as i32),
(_, Err(_)) => return Err(PFE { kind: Invalid }),
}
},
None => 1.0, // no exponent
};
Ok(sig * exp)
}
}
)*)
}
float_trait_impl!(Num for f32 f64);
#[test]
fn from_str_radix_unwrap() {
// The Result error must impl Debug to allow unwrap()
let i: i32 = Num::from_str_radix("0", 10).unwrap();
assert_eq!(i, 0);
let f: f32 = Num::from_str_radix("0.0", 10).unwrap();
assert_eq!(f, 0.0);
}

View File

@ -1,91 +0,0 @@
use std::ops::{Add, Sub, Mul, Div};
/// Performs addition that returns `None` instead of wrapping around on
/// overflow.
pub trait CheckedAdd: Sized + Add<Self, Output=Self> {
/// Adds two numbers, checking for overflow. If overflow happens, `None` is
/// returned.
fn checked_add(&self, v: &Self) -> Option<Self>;
}
macro_rules! checked_impl {
($trait_name:ident, $method:ident, $t:ty) => {
impl $trait_name for $t {
#[inline]
fn $method(&self, v: &$t) -> Option<$t> {
<$t>::$method(*self, *v)
}
}
}
}
checked_impl!(CheckedAdd, checked_add, u8);
checked_impl!(CheckedAdd, checked_add, u16);
checked_impl!(CheckedAdd, checked_add, u32);
checked_impl!(CheckedAdd, checked_add, u64);
checked_impl!(CheckedAdd, checked_add, usize);
checked_impl!(CheckedAdd, checked_add, i8);
checked_impl!(CheckedAdd, checked_add, i16);
checked_impl!(CheckedAdd, checked_add, i32);
checked_impl!(CheckedAdd, checked_add, i64);
checked_impl!(CheckedAdd, checked_add, isize);
/// Performs subtraction that returns `None` instead of wrapping around on underflow.
pub trait CheckedSub: Sized + Sub<Self, Output=Self> {
/// Subtracts two numbers, checking for underflow. If underflow happens,
/// `None` is returned.
fn checked_sub(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedSub, checked_sub, u8);
checked_impl!(CheckedSub, checked_sub, u16);
checked_impl!(CheckedSub, checked_sub, u32);
checked_impl!(CheckedSub, checked_sub, u64);
checked_impl!(CheckedSub, checked_sub, usize);
checked_impl!(CheckedSub, checked_sub, i8);
checked_impl!(CheckedSub, checked_sub, i16);
checked_impl!(CheckedSub, checked_sub, i32);
checked_impl!(CheckedSub, checked_sub, i64);
checked_impl!(CheckedSub, checked_sub, isize);
/// Performs multiplication that returns `None` instead of wrapping around on underflow or
/// overflow.
pub trait CheckedMul: Sized + Mul<Self, Output=Self> {
/// Multiplies two numbers, checking for underflow or overflow. If underflow
/// or overflow happens, `None` is returned.
fn checked_mul(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedMul, checked_mul, u8);
checked_impl!(CheckedMul, checked_mul, u16);
checked_impl!(CheckedMul, checked_mul, u32);
checked_impl!(CheckedMul, checked_mul, u64);
checked_impl!(CheckedMul, checked_mul, usize);
checked_impl!(CheckedMul, checked_mul, i8);
checked_impl!(CheckedMul, checked_mul, i16);
checked_impl!(CheckedMul, checked_mul, i32);
checked_impl!(CheckedMul, checked_mul, i64);
checked_impl!(CheckedMul, checked_mul, isize);
/// Performs division that returns `None` instead of panicking on division by zero and instead of
/// wrapping around on underflow and overflow.
pub trait CheckedDiv: Sized + Div<Self, Output=Self> {
/// Divides two numbers, checking for underflow, overflow and division by
/// zero. If any of that happens, `None` is returned.
fn checked_div(&self, v: &Self) -> Option<Self>;
}
checked_impl!(CheckedDiv, checked_div, u8);
checked_impl!(CheckedDiv, checked_div, u16);
checked_impl!(CheckedDiv, checked_div, u32);
checked_impl!(CheckedDiv, checked_div, u64);
checked_impl!(CheckedDiv, checked_div, usize);
checked_impl!(CheckedDiv, checked_div, i8);
checked_impl!(CheckedDiv, checked_div, i16);
checked_impl!(CheckedDiv, checked_div, i32);
checked_impl!(CheckedDiv, checked_div, i64);
checked_impl!(CheckedDiv, checked_div, isize);

View File

@ -1,2 +0,0 @@
pub mod saturating;
pub mod checked;

View File

@ -1,73 +0,0 @@
use std::ops::Mul;
use {One, CheckedMul};
/// Raises a value to the power of exp, using exponentiation by squaring.
///
/// # Example
///
/// ```rust
/// use num_traits::pow;
///
/// assert_eq!(pow(2i8, 4), 16);
/// assert_eq!(pow(6u8, 3), 216);
/// ```
#[inline]
pub fn pow<T: Clone + One + Mul<T, Output = T>>(mut base: T, mut exp: usize) -> T {
if exp == 0 { return T::one() }
while exp & 1 == 0 {
base = base.clone() * base;
exp >>= 1;
}
if exp == 1 { return base }
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = base.clone() * base;
if exp & 1 == 1 {
acc = acc * base.clone();
}
}
acc
}
/// Raises a value to the power of exp, returning `None` if an overflow occurred.
///
/// Otherwise same as the `pow` function.
///
/// # Example
///
/// ```rust
/// use num_traits::checked_pow;
///
/// assert_eq!(checked_pow(2i8, 4), Some(16));
/// assert_eq!(checked_pow(7i8, 8), None);
/// assert_eq!(checked_pow(7u32, 8), Some(5_764_801));
/// ```
#[inline]
pub fn checked_pow<T: Clone + One + CheckedMul>(mut base: T, mut exp: usize) -> Option<T> {
if exp == 0 { return Some(T::one()) }
macro_rules! optry {
( $ expr : expr ) => {
if let Some(val) = $expr { val } else { return None }
}
}
while exp & 1 == 0 {
base = optry!(base.checked_mul(&base));
exp >>= 1;
}
if exp == 1 { return Some(base) }
let mut acc = base.clone();
while exp > 1 {
exp >>= 1;
base = optry!(base.checked_mul(&base));
if exp & 1 == 1 {
acc = optry!(acc.checked_mul(&base));
}
}
Some(acc)
}